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Short Summary of Scientific Progress Achieved 

This was the first international scientific gathering devoted specifically to Statistical Energy 
Analysis which was first introduced nearly forty years ago. Abstracts were invited from 33 
persons suggested by the Scientific and Organising Committee of which 30 were agreed by 
the committees to be converted to full papers. Complete sets of working papers, produced 
according to the format ultimately required by the publishers, were made available to the 
participants. All paper presentations were allocated 30 minutes and the ratio of discussion 
time to delivery time was 37%. All the discussion sessions were tape recorded for 
subsequent transcription: it is hoped to include a synopsis in the edited proceedings. 

The Symposium opened with a Presidential address from Professor F Ziegler and a personal 
perspective on SEA from Professor B L Clarkson, past member of Council of IUTAM. The 
papers fell into three categories: theoretical developments; developments of experimental 
technique; practical applications. The first category included papers on the newly introduced 
smoothed energy flow and asymptotic wave propagation approaches to high frequency 
structural vibration analysis. The second category included papers on two new experimental 
techniques, namely input power modulation and energy impulse response measurement. 
The third category included a number of illustrations of the growing sophistication and 
utilisation of commercial SEA software, of which four versions were on display throughout 
the Symposium. The very lively discussion periods provided an excellent opportunity for 
individual scientists and engineers to air fundamental questions, to exchange views and 
experiences and to indicate their personal priorities for future research. 

It was concluded that, although SEA now forms the basis of high frequency vibrational 
analysis by engineers in many industries, further research is required on the question of the 
influence of system topology on vibrational energy flow behaviour, and that criteria for 
subsystem selection are still largely lacking. It was also agreed that more work needs to be 
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done on error and confidence analysis. The question of the influence of junction damping on 
the validity of the SEA equations was raised but not resolved. 

Countries represented and number of participants 

Australia (1), Austria (3), Belgium (5), Canada (1), China (1), United Kingdom (20), France 
(12), Germany (3), Italy (1), Japan (1), New Zealand (1), Poland (1), Russia (2), Sweden (6), 
The Netherlands (3), USA (7). Number of participants: 68. 

Proceedings of the Symposium 

The papers will be submitted to Professor G M L Gladwell for editing, before being printed 
by Kluwer Academic Publications early in 1998. 

Financial support 

The Symposium was sponsored by the International Union of Theoretical and Applied 
Mechanics, the US Office of Naval Research (Europe) and Kluwer Academic Publications. 
8 participants were assisted in varying degrees with travel, registration and subsistence costs 
(1 Austria, 1 China, 1 France, 1 New Zealand, 1 Poland, 2 Russia, 1 Sweden). 
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CHILWORTH CONFERENCE CENTRE, UNIVERSITY OF SOUTHAMPTON 

8-11 JULY 1997 

Dear Symposiast 

We bid you welcome to Southampton and to the IUTAM Symposium on Statistical 
Energy Analysis. It has been our long held ambition to arrange an international gathering 
of persons active in the development and application of SEA. We wish to offer our 
sincere gratitude to the Council of the International Union of Theoretical and Applied 
Mechanics for accepting our proposal to organise a symposium on this approach to 
modelling the vibrational and acoustical behaviour of complex mechanical systems which 
has undergone a long period of gestation before maturing into a widely used engineering 
tool, increasingly supported by a rapidly growing supply of commercial software. 

Under the guidance of the members of our distinguished International Scientific 
Committee, we have invited participants from the broad spectrum of SEAfarers - 
academics, consultants, industrial engineers, software developers and research students - 
and aimed to reflect the balance of worldwide activity in SEA, although some eminent 
members of the SEA community have sadly been unable to attend. We are particularly 
disappointed that Professor Richard Lyon and Dr Gideon Maidanik, two of the principal 
originators of SEA, cannot be with us. We shall also greatly miss our late, dear 
colleague, Professor Manfred Heckl. 

We wish to acknowledge with gratitude the generous sponsorship by IUTAM and the US 
Office of Naval Research, Europe, which, in addition to helping us to restrict the 
registration fee to a modest amount, has assisted a number of young researchers, and 
colleagues working in less favourable economic circumstances than ourselves, to 
participate. We also wish to thank Kluwer Academic Publishers for financial support. 

It is not conventional to provide written communications to IUTAM symposia, but we felt 
that their availability would enhance the effectiveness of the proceedings. This file 
contains copies of all papers available at the time of copying. We apologise for any 
deficiencies in legibility, but wish to point out that the official proceedings, included in 
the registration fee, will be printed by Kluwer during the next six months, after editing by 
the appointed editor, and will be despatched to each participant in due course. We hope 
to be able to include summaries of the discussions in the proceedings, so that the pearls of 
wisdom will not be lost to posterity. 

As you will appreciate, the organisation of an international symposium requires dedicated 
effort over a lengthy period from the home team. We wish to place on record our 
appreciation of the contributions of our colleagues on the National organising committee 
and, in particular, to Miss Sue Hellon who has somehow managed to handle the many 
administrative and secretarial demands of organisation in addition to her already onerous 
duties as secretary to the ISVR Fluid Dynamics and Acoustics Group. 

SEA is by no means set in stone: many fundamental technical and practical problems still 
need to be resolved. We are confident that your participation in this symposium will 
result in significant advances in this direction. We wish you a pleasant and profitable 
sojourn with us here in Southampton. 

Geraint Price Co-Chairmen Frank Fahy 
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SOME PERSPECTIVES ON WAVE-MODE DUALITY IN SEA 

R.S. LANGLEY 
Department of Aeronautics and Astronautics, 
University of Southampton, 
Southampton, SOI 71BJ, U.K. 

1. Introduction 

It is well known that the response of a vibrating system can be viewed either in terms 
of modes or in terms of elastic wave motion. Both types of description are used 
extensively in Statistical Energy Analysis (SEA): the fundamental principles which 
underlie the method are normally expressed in modal terms, whereas wave based 
arguments are often used to yield practical estimates of key SEA parameters such as 
coupling loss factors. There has been much previous discussion regarding the 
relationship between the wave and modal descriptions, and the current view is perhaps 
best summarised by quoting the following extracts from Lyon and DeJong [1]: "we 
must emphasise that it is always possible, at least in principle, to arrive at the same 
conclusions by either [the wave or mode] approach"; "modal bandwidth is a very 
difficult concept to explain by a wave analysis and spatial decay of vibration is an 
equally difficult concept to explain by using a modal description"; "the wave-mode 
duality is useful for mean value estimates, but a wave analysis of variance by its 
nature disregards spatial coherence effects that are essential to the correct calculation 
of variance". To this can be added the following quote from Fahy [2]: "just how pure 
standing wave fields can be created in any elastic system, by reflection of waves from 
boundaries of arbitrary geometry, is something of a mystery". The relationships 
between the wave and modal descriptions of vibration are explored in the present 
paper, with the aim of clarifying the extent to which each allows a "physical" insight 
into the nature of the system response. 

Initially, wave and modal descriptions of both the free and forced vibrations 
of a one-dimensional system are considered in Section 2. It is well known that the 
modes of such a system can be expressed very simply in terms of standing waves, 
although the relationship between the wave and modal descriptions of the forced 
response is less clear: a mode which is excited off-resonance no longer represents a 
simple combination of freely propagating elastic waves. It is shown here that a wave 
description of the forced response can be converted into a modal description by means 
of the Mittag-Leffler expansion [3], and the physical implications of this result are 
explored. Two-dimensional systems are then considered in Sections 3 and 4: a simply 
supported plate which is subjected to a point load is studied in Section 3, and this 
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example is used to show that any "physical" description of the response in terms of 
elastic wave motion is non-unique. The special case of a plane wave description of 
the motion of a two-dimensional system is considered in Section 4, and it is found that 
such a description, although valid in principle, leads to severe ill-conditioning which 
prevents precise resolution of the plane wave amplitudes. In this sense, the "mystery" 
alluded to by Fahy [2] cannot be resolved. 

2. One-Dimensional Systems 

2.1 FREE VIBRATION 

This section is concerned with the vibration of a one-dimensional waveguide of length 
L. For the present purposes it is convenient to assume that the waveguide can carry 
only one type of propagating wave, and the wavenumber at frequency m is written as 
k. The system might represent a rod, a string, or a beam, provided that in the latter 
case any evanescent wave components decay rapidly across die system and hence need 
not be considered as a second wavetype. It can be noted that the present restriction on 
the nature of the system is imposed only to simplify the mathematical development 
and hence clarify the physical aspects of the system behaviour - it can readily be 
shown that the main results derived in what follows are also applicable to a complex 
system which displays multiple wavetypes. 

The free vibration of the system can in general be expressed as a sum of 
right- and left-going wave components so that 

u(x) = Ase-ikx+ALeikx, (1) 

where u(x) is the system displacement at position x and the time dependency 
exp(ia)f) has been implicitly assumed. If the reflection coefficients at the ends of the 
system (x=0 and x=L) are written as Rt = exp(z'4>,) and R2 = exp0'<|>2) then equation 
(1) will only represent a valid description of the response if the following conditions 
are met 

AR = RXAL,        A^ = RiAge'"11. (2,3) 

If the frequency <o is such that equations (2) and (3) are satisfied, then the response 
described by equation (1) is self sustaining and it can be deduced that the system is 
vibrating in a natural mode. The natural frequencies which satisfy equations (2) and 
(3) are given by the roots of the following equation 

l-/?,K2<rm = 0     =>     2*L = (±2TW) + <|>1+<|»2. (4) 
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If equation (4) is satisfied then equation (1) can be re-expressed in the form of a real 
mode shape so that 

K(;t) = (py)~,/2cos(fcc -+,/ 2),       y = L/2 + (l/4*)[sin<|>1 + sin<t>2],      (5,6) 

where p is the mass per unit length of the system, and the factor y has been introduced 
to scale the mode shape to unit generalised mass. 

It is clear from the foregoing analysis that the modes of a one-dimensional 
system can be expressed very simply in terms of travelling wave components, and 
hence wave-mode duality in this sense is obvious. It should be emphasised however 
that this duality applies only when the mode is vibrating freely at its natural 
frequency. If the mode is forced at an off-resonant frequency then the mode shape, 
equation (5), is unchanged, but the wavenumber k is no longer compatible with the 
vibration frequency: the modal response cannot therefore be expressed simply in terms 
of two wave components, and wave-mode duality (in the simple single mode sense) 
breaks down. The precise relationship between the wave and modal descriptions of 
forced vibration is considered in the following section. 

2.2 FORCED VIBRATION 

In this section the one-dimensional system is taken to be subjected to a harmonic point 
load of complex amplitude P which is applied at the position x = x0. To develop a 
wave description of the system response, it can firstly be noted that were the point 
load to act on an infinite system then a right and a left going wave of amplitude 
4, = -iPI2pcga would be generated, where ct is the group velocity of the system 
[4]. The response of the finite system is produced by multiple reflection of these two 
components from the system boundaries: by adopting a ray tracing approach, it can 
readily be shown that the response at the position x = x, is given by 

«(*,) = A0e-^-x'\l +R1e~2ila')[l +R2e~mL-x')]flRl
nR2

ne-2ikIJ'. (7) 
«=o 

The summation term in this expression represents an infinite series of "round trips" 
undertaken by the wave components. By evaluating the summation, equation (7) can 
be re-expressed in the form 

u(Xl) = V~*(Jt'~*o)a + R^2***)[1 + R2e'mL-x')] I(1 - Ä,K2<rm). (8) 

The wavenumber k which appears in equations (7) and (8) will be complex in the 
presence of damping, so that k = k0-i<ar\l 2cf, where k0 is the wavenumber of the 

undamped system and r\ is the system loss factor. Clearly the response yielded by 
equation (8) will display a peak in the vicinity of a system natural frequency, since 
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equation (4) is satisfied by the resonant wavenumber of the undamped system. In 
more detail, the denominator of equation (8) gives an indication of the "dynamic 
range" of the system response as a function of frequency, since it is readily shown that 

l-e'10" <l-R1R2e'2ikL^l + e"m',       m = <ür\LliKg, (9,10) 

where m is by definition the modal overlap of the system. It then follows that 

(l-R1R2e-2ikL)nax/(l-RlR2e-2ikL)aill=Coth(ntn!2). (11) 

This expression agrees with results derived by Skudrzyk [5] and Langley [6] regarding 
the envelope of the frequency response function of a dynamic system: the ratio of the 
peaks to the troughs is found to be approximately coth(«m/2). The analysis contained 
in references [5] and [6] is based on a modal, rather than a wave, analysis, and thus 
the recovery of equation (11) in the present work is an indication of wave-mode 
duality. In more general terms, it is not immediately obvious how equation (8) can be 
related to a modal expansion representation of the response. Progress in this regard 
can be made by considering the Mittag-Leffler expansion of a function flm), which 
states that [3] 

/(«) = /(0) + 2>[W<®-»r)+l/<M. (12) 
r 

where rar are the poles of the function and br are the residues. If equation (12) is 
applied to the system velocity, v(<o)=ico«(cD), then the relevant poles are given by 
those frequencies for which equation (4) is satisfied. Now it can be noted that the 
wavenumber solutions (k) to equation (4) are real, which means that, in the presence 
of damping, the associated frequencies must be complex. Furthermore, the reflection 
coefficients satisfy the condition $,(-k) = -<t»,(fc), which means that any solution k to 

equation (4) is accompanied by a second solution -k. It follows from these arguments 
that the relevant poles are 

cor = ±(oBr(l + rn/2), (13) 

where coBr is the rth undamped natural frequency of the system. In order to calculate 
the residue associated with the rth pole, the following quantity is required 

£(i-W«) = (i /c,)[2L-(a*, /*)-(afj ldk)j       . (14) 

In order to evaluate the derivatives which appear on the right hand side of this 
expression, it can be noted that for massless end fixtures each of the reflection 
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coefficients Ä, must have the form (k-iyi)((k+*u), where n is a real constant. It then 

follows that a|>, /dt = -(sin<t>; Ik), so that equation (14) becomes 

_d_ 
dco 

(l-JM2e*tt)        = 4/y/cg, (15) 

where Y is given by equation (6).  Given this result, it can readily be shown that the 
application of the Mittag-Leffler expansion to equation (8) yields 

. v    .   / v   ,.   ,    ^ Pcos(Mo -4>r /2)cos(fcrx1- +r / 2) ,,,. 
v{m) = mu(m) = (to /pr)!)     ^(l + frO-m2 ' 

This result is precisely the expression for the system velocity which is yielded by a 
modal approach. 

Although equations (8) and (16) demonstrate wave-mode duality in a 
mathematical sense (in that the modal result can be derived direcdy from the wave 
result), there is no clear physical connection between the two approaches: away from a 
resonance the modes combine in a complex way to reproduce the travelling wave 
result, with no single mode being associated with a clearly definable form of wave 
motion. For broad band excitation the situation is somewhat different, in that the 
response will be dominated by "resonant modes", and as shown in Section 2.1, each 
resonant mode can be represented by two travelling waves. The extent to which these 
results are also applicable to two-dimensional systems is considered in the following 
sections. 

3. Two-Dimensional Systems: Initial Example 

3.1 THE SYSTEM CONSIDERED 

As a preliminary introduction to the behaviour of two-dimensional systems, attention 
is focused here on the example of a simply supported rectangular plate which is 
subjected to a point load. This example highlights certain features of the response 
which are further explored in Section 4 with regard to both free and forced vibrations. 
The plate is taken to have the planform dimensions Z, x Ij and a co-ordinate system 
(xltx2) is centred at the lower left-hand corner of the plate so that 0 < x, £ L, and 

0 <. x2 £L2. A harmonic point load of frequency ro and complex amplitude P is 
applied at the point (Jt10,x20) ; it is convenient for the present purposes to derive an 
expression for the response of the plate by employing the method of images. With 
this approach, the finite plate is replaced by an infinite plate which is subjected to an 
infinite array of point loads: the point loads which lie outside the boundary of the 
finite plate represent the effect of reflections from the plate boundaries.    Each 
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boundary reflection changes the sign of the point load, and the net effect is that the 
infinite plate is subjected to the following loading distribution 

00 

F(Xl,x2) = P 2>(x, - JC10 -2«^) - 8(x, + *10 - 2«^)]   x 

(17) 
00 

E[S(*2 -x20 -2n2L2)-B(x2 + x20 -2^)], 

where 8 is the Dirac delta function. An expression for the response of the plate is 
most easily obtained by applying the method of Fourier transforms; the spatial Fourier 
transform of the force represented by equation (17) is given by 

471      -00-00 »,—« »2—°° 

(18) 

where 

g(k1,k2) = (PI4n2)(eik>x"+iklX» -«"**" +*»*- -«*»*--*»*» + «-*.*»"«»*.).     (19) 

The response of the plate then has the form [4] 

where D is the flexural rigidity of the plate, pA is the mass per unit area, and r\ is the 
loss factor. As detailed in the following sub-sections, equation (20) provides a useful 
starting point from which both modal and wave descriptions of the system response 
can be derived. 

3.2 MODAL REPRESENTATION 

Equation (20) can be used to derive a modal representation of the system response by 
performing the two summations before the integration is carried out. In this regard it 
can be noted that 

£ e2^ = JL £ 8(jfci _ m,M,   £ e**k = _L £ 5(*2 _sn i hX 
n,=-oo **1 T-=-OO Hj=-oo ^2 j=-oo 

(21,22) 

so that equation (20) then yields 
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«di.*a) = (4P/pM,I,)ZS ^(l + ^-co2 '   (23) 

where © „ is the re natural frequency of the plate and 

klr = mlL„      t^flt/L,,       <=(D/p/0(4+4)2- C24-26) 

Equation (23) is the standard modal representation of the system response. 

3.3 WAVEGUIDE REPRESENTATION 

A wave based description of the system response can be derived from equation (20) by 
summing only over n2 before performing the integration. In this case the equation 
becomes 

00      °°    °S   o(k   k   V~*>x'""*"*'+2*'','L> 

^^'^hl^lf^-^^'      (27) 

where k2s is given by equation (25). Now from the definition of g(*i,fc2), equation 
(19), this result can be rewritten in the form 

«W-d»/«*,)! sin^20sinÄ:2A^ ^^^.^ *i • 

(28) 
The integral over kx can be performed by noting that the integrand has four poles: if 

Dk2s<pha2 then two of the poles are predominantly real, corresponding to 
propagating wave motion - the pole with a positive real part has a negative imaginary 
part and vice-versa. The other two poles are predominantly imaginary, corresponding 
to evanescent wave motion. For Dk2s >pfta>2all four poles are predominantly 
imaginary: the excitation frequency can be said to be below the cut-on frequency for 
propagating wave motion. In evaluating equation (28), the integration contour should 
be taken around the upper half-plane for xx ±^0 -2/tjL, < 0 and around the lower 
half-plane for xx ±x10 -2n,L, > 0 (the notation ±^0 is used here to represent either 
of the two terms which appear in the numerator of the integrand). In either case, only 
two of the poles contribute to the integral; a typical contribution to the total response 
arising from this procedure will have the form 

ur(xl,x2) = (iPI2L2j£ sin^oSinÄ^X rfn + tr*    '        (29) 
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where kXr is the relevant pole. The summation over /^can now be performed to yield 

«r(x, ,x2) = UP 12I^)Z sin*2,x20 sin*2pc2 —^—^j-^-^J .        (30) 

This contribution has a very similar appearance to equation (8), the response of a one- 
dimensional waveguide. In fact, the present approach is entirely equivalent to 
representing the response of the plate as a Levy series of the type 

00 

K(*I ,x2) = £ "s (*i) sin(«w2 / h.) • <3 *) 

With this approach, each of the functions us(x^) satisfies a one-dimensional 
differential equation, and the system can be considered to be comprised of a series of 
waveguides which run in the xx -direction. Each waveguide can be analysed by using 
the method outlined in section 2.2, and equations (29) and (30) represent a statement 
of this fact - the total response is produced by multiple reflections of (damped) waves 
which propagate in the xx -direction. Clearly this approach provides a "physical" 
wave-based view of the system response, but it should be noted that this view is not 
unique. The system response could just as readily be expanded as a Levy series in the 
transverse direction, so that the wave motion is taken to propagate in the x2- 
direction; within the present analytical framework, this would amount to evaluating 
equation (20) by summing only over «j before performing the integration. 

3.4 CYLINDRICAL WAVE REPRESENTATION 

A further wave-based description of the system response can be obtained by 
performing the integral which appears in equation (20) before evaluating either of the 
summations. The integral yields the Hankel function representation of the response of 
an infinite plate to a point load, and when this result is summed over all «j and n2 

(i.e. over the whole array of sources acting on the infinite plate) the following 
expression for the total response is obtained. 

u(xl,x2)=(-iP/Wk2)Z(±l)[U%)(krn)-U$)(ikrn)] . (32) 
n 

Here the index n covers the whole set of sources, and rn represents the distance of the 

nth source from the point (Xi,.x2). The ±1 which appears inside the summation arises 
from the fact that successive reflections reverse the sign of the sources, as discussed in 
Section 3.1. Equation (32) provides a "physical" description of the system response 
in terms of a source cylindrical wave which undergoes multiple reflections at the 
systems boundaries. 
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3.5 PLANE WAVE REPRESENTATION 

It has been shown that equation (20) can be used to derive both wave and modal 
descriptions of the response of a simply supported plate to an applied point load. The 
wave approach is often considered to provide the more "physical" description of the 
nature of the response (in terms of the propagation of damped waves), but an 
important issue which arises from the present work is that the wave description is not 
unique for a two-dimensional system. In SEA, a "wave description'' is normally 
taken to mean a description in terms of damped plane waves, and such a description 
has not arisen naturally from equation (20). A description of this type could however 
be obtained by putting k1=kcosBaa&k2=ksmQ, and converting the double 

integral which appears in equation (20) to an integral over k and 8. The poles of the 
integral over k occur at the plane wavenumbers of the plate, and in principle the 
resulting expression for the response could be interpreted as a complex superposition 
of plane wave components. Rather then pursue this line of approach for the special 
case of the simply supported plate, the more general issue of the validity or otherwise 
of a plane wave description for arbitrarily shaped components is considered in the 
following section. 

4. Two-Dimensional Systems: Plane Wave Description 

It is well known that the modes of a simply supported plate can be represented by four 
mutually reflecting plane wave components. Furthermore, the modes of more 
complex systems of rectangular planform can be represented by a combination of four 
plane waves and a system of edge waves - this forms the basis of Bolotin's asymptotic 
method [6], which has been interpreted in terms of waves by Langley [7]. Bolotin's 
method is not applicable to arbitrary shaped components however, and thus it is not 
clear how plane waves might interact to produce modes in this type of system. 
Furthermore a plane wave representation of the forced harmonic response is not 
straight forward for any type of component. These issues can be investigated by 
writing the forced response of an arbitrary plate in the form 

2n 2n 

u(Xl,x2) = lA(B)e-*k™*-u>kiia<>de + JB(Q)e-x>k""B-x>kiiDdde -mp(xvx2),     (33) 
o o 

where k is the (damped) plane wavenumber associated with the excitation frequency to, 
and up{xux2) is a particular integral representing the response of an infinite plate to 

the applied loading. The description afforded by equation (33) can be shown to be 
complete - for example, if A(Q) and B(8) are expanded as Fourier series then the 
equation represents an expansion in terms of a complete set of Bessel functions. A 
numerical scheme for computing the response of the plate can be devised by re-writing 
equation (33) in the form 
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u(xux2) = ^^-Mc-e.-M-ne. ^^-^«e.-^sine, ^^^    (34) 

where the coefficients 4, and B„ can be found by applying 2N boundary conditions. 
This technique can be viewed as a version of the Trefftz method [9], and recent work 
in the Japanese literature has considered precisely this approach [10]. If the method 
can be applied successfully, then it will lead to a very clear description of the response 
of the system in terms of plane wave (propagating and evanescent) components. 
However, an investigation of the approach has shown that the method is subject to 
severe ill-conditioning; this is illustrated in what follows by the derivation of the 
condition number for an example problem. 

To demonstrate the main features of the response description afforded by 
equation (34), it is convenient to consider the special case of a clamped circular 
membrane. In this case B„=0, since no evanescent waves arise in a membrane, and 
the boundary condition is u=0 on the circular boundary. By writing 
xx = rcoscpand x2 = rsincp , where r and cp are polar co-ordinates, the boundary 
condition can be applied at N discrete points to yield 

SV"****8-"*-* = ~upm,     m = IX...N, (35) 

where R is the radius of the membrane and q>m is the polar angle of the mth boundary 
point. Clearly equation (35) can be written in the matrix form 

CA=-up, (36) 

where the vector A contains the unknown wave amplitudes. The numerical stability 
of equation (36) is governed by the condition number K of the matrix C. Regardless 
of the nature of C, the condition number is related to the eigenvalues of the matrix 
C*rC; in the special case where C is Hermitian, the condition number is related 
directly to the eigenvalues of C - in fact K is given by the ratio of the largest 
eigenvalue of C to the smallest eigenvalue. For the present problem, C can be made 
Hermitian by considering an undamped system (k real) and selecting q>„ = 6„ + n 12 
(which requires AT to be divisible by four), in which case the entries of C have the 
form Cm = exp{ikRsin[(m-n)2nl N)} . Now it can readily be verified that the 
vector (1 -1 1 -1....1 -1) is an eigenvector of C, and furthermore this eigenvector can 
be expected to be associated with the smallest eigenvalue of the matrix, X^say. It 
then follows that 

*mm = Nft(-Yfe-m^n2*IN) * 2(-0A"2NlN/2(kR). (37) 
B=0 



WAVE-MODE DUALITY 11 

This result has been derived by expanding each exponential term in the summation as 
a Fourier series in the variable Q=n2itlN - to leading order, all terms cancel except 
those involving the Bessel function ]m. Now the largest eigenvalue of C is bounded 
by the column norm, and hence a reasonable approximation is "kg^ = N. It then 
follows that the condition number is given by 

K = |>W /Xj * [2JW/2(«?)]_1 - fÖT4(NlekR)Nn , (38) 

where the final expression is valid for large N. Equation (38) has been validated 
numerically by directly computing the condition number of C for a range of cases. 
Clearly the condition number grows very rapidly with N: for example, if the 
vibrational wavelength is equal to the membrane diameter, so that kR=n, then K=540 
for #=16, K=7.6e+09 for #=32, and K=6.97e+28 for #=64. Thus any attempt 
to finely resolve the detail of the wave amplitude distribution A(&) will be thwarted by 
ill conditioning - the physical reason for this can be traced to the fact that any two 
neighbouring waves A„ and An+1 become very closely aligned, and they interact 
spatially with a very long "beat" wavelength; the plate (or membrane) appears 
relatively small on the scale of this beat wavelength, and hence the two waves produce 
near identical motion over the plate, which gives rise to ill conditioning. There is a 
kind of uncertainty principle at work here: increased angular resolution on 4(0) leads 
inevitably to decreased spatial resolution between the wave components and hence ill 
conditioning. 

Equation (34) has been applied by the author to a clamped skew plate. It has 
been found that the solution yielded by the method passes through three phases with 
increasing N: (i) for small N the problem is well conditioned but the solution is 
inaccurate; (ii) for moderate N the problem is reasonably well conditioned and a very 
accurate result is obtained for the physical plate response - even so, the wave 
amplitude distribution A(Q) yielded by the method is not meaningful, since the results 
are erratic and show no convergence with N; (iii) for higher values of N the problem 
is ill conditioned and the results are very poor. This confirms that a plane wave 
description of the response is possible in principle, although precise determination of 
the wave amplitude distribution is not possible due to ill-conditioning. 

5. Conclusions 

This paper has considered various aspects of wave-mode duality in one- and two- 
dimensional systems. For one-dimensional systems it has been shown that the modes 
of vibration can readily be expressed in terms of standing waves, although it should be 
noted that this representation is only valid at resonance - away from resonance, the 
modal wavelength is not commensurate with the wavelength of a propagating wave, 
and simple wave-mode duality breaks down. More generally it has been shown that 
the forced response of a one-dimensional system can be derived by employing a ray 
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tracing procedure, and this wave based description can be converted into a modal 
description via the Mittag-Leffler expansion. 

Two-dimensional systems have been explored by considering initially the 
response of a simply supported plate to a harmonic point load. Equation (20) 
represents a general result for the response of the plate which can be manipulated to 
yield both the modal description and a number of (non-unique) wave descriptions. 
The issue of a plane wave description of the response of an arbitrary component has 
also been explored, and it has been shown that a form of uncertainty principle applies: 
the precise distribution of plane wave amplitudes cannot be determined due to ill- 
conditioning. 

The non-uniqueness of the various wave based descriptions raises an 
interesting question as to whether the wave viewpoint can actually be considered to 
offer a more "physical" insight into the nature of the system response. In classical 
mechanics one tends to expect a "physical" description of the behaviour of a system to 
explain what the system is "really" doing, and such a description might be expected to 
be unique. The modal description is unique, in that the mode shapes are well defined, 
or alternatively in that the Mittag-Leffler expansion of the system response is well 
defined. However, the concern in SEA is with coupled systems rather than with 
single structural elements, and the modes employed are those of the uncoupled 
subsystems: this re-introduces the issue of non-uniqueness, since the subsystem modes 
can be defined under a variety of boundary conditions - for example free, or blocked 
(with the addition of "static" modes to make the modal basis complete). Clearly the 
wave and modal descriptions of the system behaviour are mutually compatible, and 
neither can claim to offer a definitive (or unique) physical insight into the system 
dynamics. 
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WAVELENGTH SCALE EFFECTS ON ENERGY 

PROPAGATION IN STRUCTURES 

A. CARCATERRA 
Insean, Italian Ship Model Basin 
Via di Vallerano, 139, Roma, Italy 

1. Introduction 

In the field of energy transmission in dynamical systems the Statistical Energy 
Analysis (S.E.A.) is, at present, the most acknwledged contribution. Based on the 
thermal exchange of mechanical energy, S.E.A. provides information on the stored 
and dissipated energy and on the transmitted power between coupled dynamic 
systems. In spite of the particular simplicity of this energetical formulation, the 
research of a solid theoretical basis of S.E.A. instances has required, and still 
imposes, a remarkable effort to the scientific community [1-6]. 

In these last ten years several methods have been developed to meet new arising 
requirements. In these methods [7-9] the extension of the original S.E.A. statements 
is performed. While in S.E.A. complex structures of finite size are considered, in the 
new approaches the same thermal relationships are directly translated into 
differential form. 

Aim of this work is to reconsider the thorny but fascinating problem of the 
vibrational conductivity under the ligth of the wavelength scale effect. The basic idea 
is that the wave energy transmssion is dominated by the ratio between die 
characteristic length d of the system and the characteristic wavelength X generated 
by the excitation. More precisely the non-dimensional value of the ratio \i-d/X 
seems to separate two different energy rate conditions: the small and the large \i 
scale range. 

2. Energy Balance Equation and Constitutive Relationships 

The Poynting vector is defined as /=a v, where a and v are the stress tensor 

and the velocity vector, respectively. It gives, by its modulus and direction, the 
de 

power flow through a continous medium. The power balance is: rf/vZ+n^ =—, 

being II^,— the dissipated power and the time derivative of the total energy 
d t 

(kinetic and potential) respectively. 
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The transmission potential function has been introduced in [10]. A general 
definition of y is given by: l=grady. The power balance equation therefore 

de 
becomes: V!^+nfc = —• 

The problem of providing the energy constitutive relationships consists of the 
following steps: 

• determination of the correlation v=V(<0 '• 
• determination of the correlation n^, =11^, (<?). 
When  harmonic  motion  and  time-average  are  considered,   the   following 

I   CT 1 
constitutive equation is accepted: n^ =2»; <a (e), {e) = ■jfJ^P"*'"''dt' where ^ 

a and T are the loss factor, the circular frequency and the period of oscillation, 
respectively. As a consequence of this assumption the time derivatives into the 
energy balance disappear. In this case the potential of transmission depends on two 
different terms, and only one (thermal contribution, 0 is proportional to the local 
stored energy: v = V, +V», = «(*)+V\» while the second term y>d (deviation, d) has a 
more complex form [10]. 

In the present paper a study of the power transfer through regions of characteristic 
finite size d of a dynamical system is proposed. More precisely the importance of the 
ratio between the characteristic size d and the characteristic wavelength X is 
analysed. 

Therefore the following time and spatial moving-average energy is considered: 

(?(.t.y,z)>=^r/^(|,»7.?>^^^: Ds{x<S<x + d,y<ri<y+d, z<t<z + d} 
0 

3. Asymptotic Thermal Effects on a Discrete Linear Array 

The equation of motion for a linear spring-mass system is: 

m—-u, + k{u, -«,_,)-*(«,,, -u,) = 0 
at 

Let us find a solution of the form: «,(;) = U, e<", U. = z', where z is an uknown 
complex constant. Two cases are discussed: 

• Below the cut-off frequency: wS2 w. 
In this condition the two z values, roots of the characteristic polynomial, are 

complex and conjugate.When to« o>,a first order Taylor expansion in terms of the 

ratio ml o>H leads to the expression: 

z...(w)«e   ["-> +       u(i,t) = zJ(o>)eim,s*e   l   "' 

that is a propagative-nature solution. 
• Above the cut-off frequency: to>2 to. 
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When the frequency is above the cut-off limit, no wave propagates through the 
linear chain. The solutions z+, z_ are both real, with modulus less than one. This 

circumstance leads to an extintion of the motion L   ^   z'... = o) along the chain 

from the reference station. When a> »to. , the following approximation holds for 

the two roots: 

z+(ö>) = y"(ö>), z_(«o) = y(ü>). v(.°>)--\-^- 

Below the cut-off frequency and in the absence of damping, the phenomenon 
presents exactly the same propagation characteristic as in a continous waveguide. In 
[10] the energy distribution equation is determined and it does not exhibit a thermal 
behaviour. 

Above the cut-off frequency a sort of thermal effect can be observed. The chain 
motion, when a> »w „, is well approximated by the form: U, «l/„ y', (e), *>U0'y". 

Therefore the chain asymptotic energy (e)' obeys the law: 

(ey -2(e)' + {e)"„, -| —] (e)' =0. This result is suggestive for several reasons. In 

fact a smooth thermal-like asymptotic trend of energy is exhibited by the discrete 
system even in absence of damping, when using the time-average kinetic energy. 
This is a peculiar characteristic of these systems, that they don't share with the 
continous ones. 

Let be d the distance between two consecutive masses along the chain; the 
thermal energy behaviour is possible only when the wavelength is much bigger than 
2d (equivalent to the condition o»>w.). The asymptotic limit expressed by eq (5) 

is therefore reached when /*=2<f/A-». Here \i draws the bound between two 
complete different energy propagation domains. This sudden change, when the 
frequency crosses the cut-off limit, is not present in continous systems, mainly 
because of the absence of the cut-off phenomenon. The crossing is, in that case, 
smooth and involves the space average energy, but \i plays its role in a similar 
manner, at least for onc-dimcnsional systems. 

4. Asymptotic Thermal Effects in One-Dimensional Waveguides 

The solution for a harmonically vibrating beam is: w - (a_«?"" + a,e~"") e"', 

being k the complex wavenumber and a., a+ the wave phasors, depending on the 

boundary   conditions.   The   time   and   space-average   energy,   defined   by 

(?(*)) = —f+l"\e(^))d$, after some mathematics, can be written as: 
rfJx-JU' 

CO-*. \ae   ' +be   >   +c —j—— \cos(2ktx+tp) «<*).+«*>,    (6) 
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ß=|a+|\ b = \i.\', c = 2\a.a'_\, ip = l[a^a'_) 

where t and d indicate thermal and deviation component respectively. The first, 
(e)(, smooth, is governed by exponential terms and is thermal; on the contrary the 

second one,(e),, is harmonically oscillating. Under this point of view the situation 

does not differ so much from that obtained by using only the time-average energy 
[10]. The relevant difference is here related to the presence of the n dependent 
factors in the energy expression. Those terms control, through p, the relative 
amplitude of the two energy contributions and their asymptotic properties (as y. ■+<*> 

or ft-0 ) reveal two different energy rate regions: the small and the large /i scale 

range. 
When the local energy value is accounted for, corresponding to d -0, no space- 

average is performed. In this case j<-»0and from the last written equation it is 

apparent that the factors involving \i in the energy expression tend both to 1. 
Therefore the thermal and non-thermal components are of the same order of 
magnitude. On the contrary the opposite asymptotic limit, ft-*», definitly increases 
the amplitude of the thermal components, while the non-thermal one tends to vanish. 
Moreover if ß - n/2 ( for an integer n ) the amplitude of the non-thermal component 
is zero. 

It can be concluded that the thermal conductivity has an asymptotic validity in 

the sense previously defined i.e.: (?) = (?)" = {«"), • 

To point out better this wavelength scale effect, it is interesting to estimate the 

thermal and non-thermal transmission potentials. It is: v = -(«) +VJ ■ Moreover 

i -» oo,       (asymptotic property) 
the property holds: i(/i(x,ft) = 0 

ft=—,      n-1^,3  

Therefore it can be concluded that, for the beam, the time and space-average 
asymptotic energy {tf satifies the conductivity vibrational principle. 

S. Asymptotic Bounds in Two Dimensional Waveguides: Non-Thermal 
Energy Components 

In plates we can represent the solution as obtained by superposition of an infinite 
number of plane waves travelling in any possible direction. The displacement w can 
be expressed as an integral of the form: 

w(r) = fa,(9) e"'1"» '■ +a_(0) e»-(,)'- dB 
•^ 0 
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where k(8) = k,{!-jril4) n{9) is the complex wave vector, w(0) the unit vector 

associated to- the 0 direction of propagation and rs{x,y} the position vector. The 

time and space-average energy associated to the displacement field is (omitting the 
heavy mathematics): 

I-* 

where: 
A=a.(9,)a:{9,). A = at{9t) «1(0,), A =«.(0,) <(«,). *,=«_(*>:(*,), 

/run f^dii                      giii    £,''»'_/  g'"'_y 
J       e'-"-di-dT,= —■—-777- 

and 

V,-4*"(ö0-*(«I)].!:»--4£'(ö0+^I)1-!1.-^[*"(0.)+*(*I)].£^->U'(^)-^)] 

In the previous expression of the energy field two main contribution can be 
separated. 

In fact it is easy to show that the following decomposition holds: 

V'p:f:AieM^A-e,)i>-w,-».)]".«. 

i-/ 

where 5 is die Dirac's generalized function and the two energy components are 
named interference wave energy (iwe ) and coincident wave energy (ewe) 
respectively. The first is related to incident waves propagating along different 
directions, while the second is due to the waves propagating in a given direction. 

The explicit form of the ewe is instead recovered by using the expression of 
v,(0,,0,), given before, when 9, =02 =0. It holds: 

v, - -k, 2-n, v2 = -2 jkt n, v, = Jfc, jn, vs=2jktn, where n = {cos0,sen0}. 

Substituting into the ewe expression one obtains, after some mathematics: 

=  A (^-ix^-i) |.( ,-*,+A4Mde 
(jzftijysai29e" ' 

(?)     = KT rfsen(2^coS0)sen(2^^sene)V[   ■     ( } 
w<~<    '■Tj.y (*/*)'sen20 j '^'     V   *—     ' 
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<?L = (*),...,+ ('L, 

where <p = LAt .The analogy between this part of the plate and the beam energy is 
complete. In fact the first term is thermal and satisfyies the conductivity law. On the 
contrary the second one is non-thermal but has the same asymptotic properties 
discussed in section 4 about the beam energy. Therefore the  (?)w  provides 

substantially a thermal energy contribution. Proceeding in the same manner shown in 
section 4, when high p values are considered (i.e. (e)m t vanishes), the asymptotic 

ewe energy obeys the thermal law i.e.: V'(e)^- — (e)^ -0 . The asymptotic 

•   • ...       .i 2<t> 
transmission potential is: v „=■ —r 

\2 

It is important to notice that the possibility to split the ewe energy into two 
independent components, is related to the form of the v, vectors. They are in fact 
two reals 0=1,4) and two purely imaginary 0=2,3). 

Let us examine the part of energy related to the waves interference. It is 
convenient to introduce the notations: 

The v,, z, vectors are now generally complex and, thus, the integrand contains 
both evanescent and harmonic factors coupled. After some mathematical 
manipulations it holds: 

4 

where:    FleW^M9.'9.)— rf .      .         r- 

and the symbols R and / indicate real and imaginary part respectively, and the 
dependence on \i is explicitely indicated. This energy does not satisfy the thermal 
equation, as it can be proved by direct substitution. Therefore it is worthwile to 
analyse the trend of the functions F, versus //. 

The exponents affecting the asymptotic trend of these functions are only the real 
e"" 

ones. Therefore, the asymtotic analysis of F, involves the general function —. It 
fi e 

km      e"*      [0 if cr<0 
follows:  =\   ., 

ft-*eo  fte"     [oo if a>0 
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Since a is the real or imaginary part of the generic z, vector, when 0,, 6, vary in 

the integration region Qs[0;7t\x[0;7t\ a belongs to the interval -r//2<a<j//2. 

Therefore in the part of 0 in which a > 0, F, tends to zero when p increases; but in 
the remaining part of 6 it tends to infinite. Looking at the z, vector expressions, one 

is easily convinced that for each region 91. c 0 over which a < 0 exists a 
corresponding 9t4c 0 , of equal area, over which a > 0 Consequentely the integrand 
of the interference wave energy has globally the same exponential increasing trend as 
the contributions in the integral of the coincident wave energy. Thus a non-thermal 
component definitly exists, even when asymptotics is considered. It should also be 
noticed that the combined effect of an increasing and a decreasing component of iwe 
can determine a relative minimum in its contribution to the total energy. 

6. Experimental Validation of Theory 

The rest of this paper describes some experiments designed with the aim of 
validating the theoretical predictions. 

The experimental tests have been performed on one beam and one plate excited 
in the high frequency range. In fact the wished variations of the \i parameter imply 
the use of short wavelengths to avoid the construction of very large structures. 
Moreover the thermal analogy is essentially formulated to perform a convenient 
analysis in the high frequency range. Consequentely a very fine measurement grid is 
necessary and a laser measurement technique is used both for the beam and the plate. 

Goal of the experimental analysis is to check how the wavelength scale effect, i.e. 
\i, acts on the energy transfer law. 

To this aim a single meaningful parameter is proposed as an indicator of the 
tendency of the energy to elude the thermal law, or as a measure of the deviation 
energy component. 

In the following the relative energy error criterion is presented for the plate case, 
being it totally analogous in the simpler beam case. 

The vibrational conductivity equation is: 

V'®-ß'®=>0, (7) 

where ß is a constant depending on the loss factor, the frequency and the wave 
phase speed traveling along the structure. Its actual value for the real structure under 
study is only roughly evaluable due to the uncertainties affecting the mentioned 
quantities. It is thus preferable to determine it during the experiment, following the 
identification procedure explained later on. 

By laser, the velocity phasor w,.; in each point of the measurement grid PM is 

available. Therefore the energy density distribution over the grid is determined as: 

Let us divide the structure into rectangular regions, or cells C,,, of characteristic 

sizes d,,dy. Time and space-average energy can be computed, for each cell, as: 
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®>-=TT2U« 
=
TV2>

(/
^>   

where '-'G C" 
«   »   1./ *    »   '•/ 

At a fixed frequency <u, a corresponding wavelength A is generated. Therefore 
for each decomposition into cells of characteristic sizes dx,dy, a related value of the 

d    4d.d, 
\i parameter is determined, for example, as follows: ft=y=JL-j[— Bv varying the 

characterisüc dimension of the cells, at a fixed frequency, the wished \i parameter 
variations are obtained and, in correspondence, several distributions of the related 

average energy (*(/0),, are computed. 

Since the aim of the experiments is to check the limit of validity of the thermal 
formulation for the energy transmission expressed by (7), the simplest way to solve 
the problem is to compute the error equation substituting the measured energy 
distribution into the thermal balance equation (7). Expressing the energy balance 
between the cells one has: 

7 + < 
-/JJ(?(/<)),., =«(/'),., 

e(ft) is the non-thermal power component, i.e. the error affecting the thermal 

hypothesis. 
The value of the ß coefficent is determined, by a least square procedure, 

imposing that the global thermal error over the whole structure, 

i.e.e((i) = \e'(n),,,  , be minimum. This value (ß„J provides the best fit of the 

energetic experimental data by the vibrational conductivity hypotesis.    The global 

thermal error e (n) accounts for the square of the total non-thermal power flow. 
In the following it is preferable to refer it to the total dissipated power in the 

structure   in   order   to   obtain   a  more   significant   non-dimensional   relative 

->>=70§> • EW=2<fW>" • 
Aim of the experimental analysis is to evaluate the behaviour of e„, (/<) versus n, 

to check if the energetic transmission effects predicted by theory are met in practice. 

7. Experimental Set Up and Results 

The first set of experiments were performed on a hanged alluminum beam, whose 
length is 1.4 m. It was attached to a frame structure, by two elastic wires. 

A damping layer was applied on the beam surface. It introduces an important 
increment in damping and in mass per unit lenght but not in the beam stiffness. 
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A laser head was used to perform the velocity measurements (over 140 points) in 
order to recover the kinetic energy distribution.The maximum range of /I, allowed 
by the available measurement chain, is 0 < n < 3 . 

The trend error, as defined in section 6, is plotted in figg.l, 2, 3 versus n, at 
frequencies 8 kHz, 12 kHz and for random vibrations with flat excitation spectrum in 
the range 8-10 kHz respectively. 

The asymptotic limit of the error as \i increases is apparent. Moreover the sudden 
decrement in correpondence of the critical values \i= 0.5, 1, 1.5, 2, 3 are also clear 
(see sec. 4). The agreement with theory seems to be very good. 

The experimental set up for the plate ( 0.6 m x 0.8 m ) test is analogous to that 
described for the beam. 

The maximum tested frequency is fixed at 4 kHz and a point force is applied to 
the plate in x=0.5, y=0.5. The minimum wavelength is estimated to be about 4 cm. 
The corresponding maximum number of points in the measurement rectangular grid 
is 128 x 64 = 8192. The plate is hanged by two elastic wires and the coupling 
between the exciter and the plate is obtained by a sting connector. 

The procedure described in section 6 is applied to produce the error parameter for 
the previous test case and its trend is shown in fig. 4. In fig. 5 the error parameter is 
plotted for a random force test (frequency 3.5-4.5 kHz). The trend of the e(ji) curves 
show the different behaviour of the plate energy with respect to that of the beam. A 
direct comparison is shown in fig. 6. In fact in the plate test relevant errors are 
present even when the n parameter is considerably high (about 4). Moreover it is 
important to point out that in this last region the cell size (20 cm) approaches 
dimensions comparable with those of the plate. 

Another difference with respect to the beam is the absence of the zero values in 
correspondence of some mupltiples of wavelength fractions as predicted by theory 
(see sec.5). 

8. Conclusions 

The developed analysis highlights different scale laws in the mechanical energy 
transmission. The \i parameter controls this characteristic scale. In the small scale 
transmission range (M < 1) the vibrational conductivity principle fails for every type 
of considered structure: beams and plates. In the large scale range (ji» 1) the beam 
substantially obeys the thermal law, but the plate does not. A physical explanation, 
based on the coincident and the interference wave energy is proposed to justify these 
different behaviours. 

In two-dimensional systems, although in the large \i scale range the non-thermal 
components (related to the interference wave energy ) can be reduced, they 
significantly contribute to the total energy field. 

About two or three-dimensional structures it seems that the asymptotic thermal 
limit is reached very slowly as fi increases, i.e only when performing spatial-average 
over the entire structure, or over so large portions of it, that the real advantage with 
respect the classical Statistycal Energy Analysis is doubtful. 
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ABSTRACT 

The high frequency structural/acoustic dynamics has become a subject of increasing 
interest over the last few years. Special methods like the (SEA) have been developed to 
describe structural/acoustic response in this field. Recently, new original strategies like 
the Wave intensity Analysis (WIA) or a class of models called simplified energy 
methods (SEM) appeared to avoid (SEA) deficiencies. Two forms of the energy flow 
methods has been developed for (SEM). The first one is a pure differential energetic 
equation and is established using a plane wave hypothesis. The second form of the 
energy flow methods takes a pure integral form and is established from a cylindrical 
wave hypothesis and using Huygens principle. 

This paper proposes some comparative results in attempt to clarify the validity 
domain and the main restrictions of each high frequency model. For this purpose, the 
system into consideration is a complex plate configuration. A numerical study is 
proposed in order to compare the energy models results to a semi-analytic "exact" 
prediction of the energy level of the system. Several structural parameters are considered 
(damping ratio....) to realise a parametric survey. 

1- INTRODUCTION 

The (SEA) is until nowadays, the main predicting method of the high and mid-frequency 
vibration through complex structures. It seeks to calculate the spatial average of energy 
for each sub-system by considering the power balance. Researches into the (SEA) 
validity have shown that it only applies to structures which are reverberant and have a 
high modal overlap. Besides, Guyader et al. has shown that (SEA) over-estimates the 
vibration energy levels between two steel plates in L-shape. Therefore, it seems to be 
important to investigate some alternative techniques. 
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The first one has been developed by R.S. Langley. It is a natural extension of the 
(SEA) and is called Wave Intensity Analysis (WIA). It relaxes the implicit wave field 
assumption of the SEA as well as the modal equi-repartition of energy. The two other 
possible (SEA) improvement methods are the so-called differential simplified energy 
method and the integral simplified energy method. They represent two different 
formulations derived from the same high frequency hypotheses. The (SEM) is a power 
flow model based on the original work by Belov, Rybak and Tartakovski, who first 
derived a differential equation of the heat conduction type to characterise the "spread" 
of energy throughout an absorbing structure. Since, power flow methods have been 
implemented in the case of Euler-Bernouilli beams, membranes, Kirchchov-Love plates 
and many coupling problems. 

In what follows, we first present the (SEA) and (WIA) fundamental hypotheses and 
equations. Secondly, we present the two (SEM) formulations. Next, we focus on the 
coupling relationships used in the (SEM) formulations. Lastly, a numerical study is 
proposed in order to compare the four energy models with exact results. 

2- BRIEF DESCRIPTION OF THE CONSIDERED ENERGY METHODS 

2.1. STATISTICAL ENERGY ANALYSIS (SEA) AND WAVE INTENSITY 
TECHNIQUE (WIA) 

The main goal of the (SEA) is the prediction of the distribution of energy associated to 
the modal densities for each sub-system. Statements such as weak coupling, (subject of 
important debate), equi-repartition of energy between the modes present in high density 
for any sub-system, random stationary excitation forces and no correlation between the 
forces conservative coupling, are the (SEA) Hypotheses. 

They involve that each sub-system should be reverberant enough to consider diffuse 
fields. They involve too a high modal overlap factor for each sub-system. The dissipated 
power and the power exchanged by two sub-systems may be expressed in the following 
forms: 

W{W} = (K>}/fl>e) (2.D 

on *.-M = s.IX-O-SrsKs etTlrr = tlr 

The coupling loss factors are given by the following expression ([6]): 

x 

^=-^K(e)cos(e)de (2.2) 

where x^ are then transmission efficiencies of the coupled sub-systems. 

The (WIA) appears to be a natural extension of the (SEA) approach. As a matter of 
fact, this method takes up the main (SEA) assumptions, relaxing nevertheless the diffuse 
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wave field assumptions and considering the wave field homogeneous random. Thereby, 
the directional dependencies of the wave intensity and energy density in each sub- 
system are represented by Fourier Series. Furthermore, if a single term of the series is 
used, the (WIA) recovers the (SEA) form in the coupling loss coefficients expressions. 
Moreover, it is interesting to notice from a modal point of view, that the standard 
assumption of energy equirepartition between the modes of a particular sub-system, is 
relaxed ([2]). Under the assumption that the dynamic response of each component is 
represented in terms of a random wave field, the total energy density may be expressed 
as: 

<E> = 2(T) = SjJ<W>;(e,a))JBJü) (2.3) 

with (W^e,«) = 2 p O)2 ^(6,0)), Sj spectral density, Wj being the density of a 

particular wave type which is attributable to a plane wave of pulsation co, and 
propagating into the 0 direction (cf Figure 1). 

fronticrc frentiere 

■I/?,») 

Figure 1. Boundary description according to Wave Intensity Analysis. 

The power flow vector (or intensity) associated to a particular wave type has the 
general expression: 

<i);(e,co) = cgj<w>J(e,to)a(e) (2.4) 

where u(6) is the unit directional vector of the power flow. In order to find the 

quantities, we have to consider the energy flow equilibrium equation for the heading 6 
of the wave of type j: 

<pinj>,(e,co) = (pdis>;(e,co)+<pc„>J(e,co)-<pd)J(e,co) (2.5) 

where (P;nj); is the injected power due to external forces, (Puis),the dissipated power, 

(P,.,,), the power entering the sub-structure through boundary, and (Pm)} the outgoing 
power. After having expressed the two last powers in terms of the intensity vector and 
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next in terms of energy density as well as the dissipated power, the power equilibrium 
([2]) may be written in the form: 

[cftwWvJ = P (2-6) 
with 

<w)J(e,o)) = X<w>JP(to)N;(e), 

IP*» Ü 

and 

-'it 

owiiVj jH(eWe)»+K2B c.i)X^ JNl-(6)N»(e) coa;e+7c/2-Vk)de 

-(co/27t Cj)XLm |H(eW<t>mi) cos;e + K/2-x|/m) <(t)mi + 7c/2-Vm)d6 
m 

PJP = Jp^e.cojN^eJdö. 

In practice, two further hypotheses are made as far as the N functions are concerned. If 
the considered panel has only horizontal reflecting boundaries, the appropriate Fourier 
components are cos(n0). If it has horizontal and vertical reflecting boundaries, the 
Fourier components must have the form cos(2n8) with n even integer. 

2.2. SEM ENERGY MODELS 

The first step in the energy method development is the well known energy flow balance 
written in harmonic form. In this case, the time is removed and the following expression 
is obtained; if <. > is the temporal average and  .  indicates (MES) hypotheses: 

V.(I) + TiQ)<e> = <£..). (2.7) 

In the following, a hysteretic damping model is considered. The assumption set 
required to derive the (SEM) is: 

(i)   4 Linear, Elastic, dissipative and isotmpic systems. 

(ii)  4 Slight hysteretic damping loss factor. 

(Hi) ♦ Steady state conditions with harmonic excitation  a. 

(iv)  ♦ Farfivm singularities, evanescent waves are neglected. 

(v)   ♦ The interferences between propagative waves are not considered. 

The assumptions (1), (2), (3) define the general context of the study, the assumption 
(2) involves that the wave numbers are approximately equal to the undamped axes. The 
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assumption (5) has been introduced by Ichchou and Jezequel in order to generalize the 
space average concept developed by Bouthier and Bernhard ([9]). It means that in the 
mid and high frequency range, we assume the decorrelation between the propagative 
waves. At this stage, the relevant relation between a partial active energy flow and 
energy density may be expressed in the following form: 

<i> = cg<e>ü (2.8) 

2.2.1 Differential (SEM): 
The parameter cg is the group velocity concerning the wave type j. Since we assume 
that the dynamical behaviour of our system may be approximated by a plane wave 
field solution, it can be stated: 

(I> = -^girad«e>) (2.9) 
T|Q) 

Thereby, the power flow balance (cf. Eq. (2.7)) may be expressed in the form by using 
Eq.(2.9): 

2 

--^-A<e> + ii(D<e) = <p  > (2.10) 
T| CO -"" 

In this study, we only consider the bending waves propagating in the plate 

2.2.2 Integral Simplified Energy Method 
A. Le Bot [8] has adopted an integral formulation of the (SEM). The energy fields are 
written by applying the Huygens Principle. 
The scheme of this method is based upon the definition of a energy travelling wave in a 
infinite isotropic medium of dimension 2, excited by a driving point S0. Accounting for 
the relationship linking the energy density to the energy flow Eq. (2.8), the power 
balance leads to the distribution equation: 

9 < e >    <e>    Tito _ 

whose kernel G constitute the fondamental propagative wave: 

G(S(„M)=e 

2;rr 

G describes in this case a cylindrical wave propagation. 
The associated energy flow vector is expressed as follows: 
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T\(tt 

H(S1„M) = cB
e   ' 

27cr 

The expressions of the fields < I > and < e > involve a boundary repartition of 
secondary sources c, in addition to the primary sources p. The principle of 
superposition on energy variables is valid since interferences coming from differents 
sources are neglected. So we write for M 6 Q: 

< 

< 

e>(M)= f p(S)G(S,M)dS+f o(P)f(P,üMP.np)G(P,M)dP 

I > (M) = Jup(S)H(S,M)dS +JaQo(P)f(P.üMp.np)H(P,M)dP, 

where f(P,.) is the directivity of the boundary source P. 
The power balance at any boundary point P exhibits a Fredholm equation of the 

second kind on a [8]: 

o(P) = ^P(jnP(S)G(S.P)dS + J.)iiO(P)r(P,,üt>r.h,„)G(P,P)üp,P.npdp}  (2 12) 

with 

n/2 

Y(P)=  Jf(P,6)de, 
-7C/2 

a(P) uhsoiption coefficient. 

This formulation, quite similar to the description given by R.N.Miles [11] for 
acoustic fields, proposes further applications in high frequency dynamic. It has been 
generalized to the case of structures with several types of waves and coupled sub- 
systems. 

3- NOTES CONCERNING THE COUPLING RELATIONSHIPS 

This section summarizes some of the results concerning the description of the energy 
exchange according to each energy based method. As mentioned in several references 
dealing with high frequency dynamics, this particular point is one of the major sources 
of errors and discrepancies in the energy methods predictions. Indeed, the use of energy 
variables (scalar) rather than the displacement field (vector) introduces difficulties 
concerning the characterization of discontinuities. 

The technique which has been employed in this paper for the coupling loss factors 
determination is purely "propagative". It is based upon the calculation for the interested 
system of the reflection and transmission efficiencies. The knowledge of those 
parameters allows the determination of energy levels from (SEA), (WIA) thinks to 
expression (2.6) and finally (SEMI) using relationships given below in section 3.2. 
However, the use of reflection and transmission efficiencies in the context of (SEMD) 
formalism is not immediate. Nefske and Sung [12] who proposed one of the earlier work 
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concerning the use of the thermal analogy to predict the high frequency dynamics, report 
in their paper a relationship able to couple two Euler Bernouilli beams. 

Assuming pure conservative coupling, Nefske [12] express the power exchange 
between subsystem 1 to subsystem 2, by 

-(c^/ricojde^dx = -(cJ2/rico)de2/dx = T12C, ej -T21C2 e2 ,2 ]3s 

Recently R. S. Langley [13] generalises this relationship in the case of two pure 
bending plate junction. The relationship proposed is then: 

-(c^/ricoJVe^n, = -(c;|2/T|G))Ve2.n, = (fo/L^S^,, e; -S2r|21 e2] 

where 

r|12=(c1.1L/coKS1)jT12(e) Uin(e)J n, d6 

Some authors have considered the differential energy equation (2.10), boundary 
condition and coupling conditions in depth. For instance, the general form of the 
boundary conditions for one propagative mode is given in reference [12], in one 
dimension by the following relationship: 

(c;/tico)de/dx = —fe 
(2.14) 

g designate the reflection efficiency of the boundary. 
For non dissipative boundary, the reflection efficiency is equal to 1, and the 

expression (2.14) leads to the expected results showing that no energy flow through the 
boundary. In the case of monodimensional coupled systems, Cho and Bernhard [14], 
Ichchou and Jezequel [4] and Djimadoum and Guyader [15] proposed similar 
relationships put into the practical form: 

-(c^/ricojde^dx = — cgl e, 21— Cg2 e2 
Qn + Q21 £12 +521 

-(cJ2/ri(o)de2/dx = &— cgI e, -— c¥2 e2 
^15 ■*"<551 <B12 "»"^l 

(2.15) 

where   £12,C21, T12 and t21   are   respectively   the   reflection   and   the   transmission 
efficiencies. 

A generalisation of this relationship to plate interfaces has been proposed by Cho 
[14] and Ichchou [4], It may be noticed that the expression (2.15) and (2.13) are 
different. 
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The fact that both (SEA) and the differential (SEM) use averaged values of the 
transmission efficiencies has to be noticed, whereas (WIA) and the integral form of 
(SEM) use non diffuse transmission and reflection efficiencies. 

3.2 BOUNDARY CONDITIONS FOR THE INTEGRAL SIMPLIFIED ENERGY 
METHOD 

The analysis of coupled structures needs the knowledge of the transmission and 
reflexion efficiencies of plane waves on boundaries. Considering two coupled sub- 
systems &! and ß2, the field < I1™ > emitted in system Clx in direction 0 by a point 
of boundary separating the two domains, is chosen as the contribution of: 

< C > (6) = R,(8) < IL > (eL„(8)) + T21(6) < If„, > (9^(6)). 

0j„c(0) is the incident angle of the wave reflecting on the border in the direction 0 and 
e?IIC defines the direction of the incident wave being transmitted in direction 0 through 
the boundary. 

The subsequent linear relations define the coupling conditions linking the unknowns 
o, and a, associated respectively to Q, and Q,. For P € dQ, r>3Q,: 

o.(P) = —— \ f R1p(S)G1(S,P)üSP.iiPdS + fR,o,(P)r;(P\üPP..nV)G1(P\P)üP.P.n1
PdP + 

jT21p(S)G2(S,P)üSP.npdS + jT21a2(P%(P\üPP..nV)G1(P\P)üp.p.iipdP 
Ö, Uli, 

a,(P) = —— | fR,p(S)G,(S,P)Gsp.n2
PdS+ fR1a,(P)t;(P,üpp..hp.)G2(P,P)üp.p.nPdP + 

Y2(
p) [i  "        " i " " 

jT12p(S)G,(S,P)üSP.n
1pdS + JT13O,(P )f,(P .üpp-np-JG^P ,P)üP.P.iiPdP 

im. 

The numerical implementation of such a system is easily obtained by a collocation 
method and a rough discretisation of the boundary unknowns at 

4- COMPARATIVE RESULTS AND PARAMETRIC SURVEY 

4.1. CASE STUDIED 

The system which has been considered is a planar coupling between two bending 
rectangular plates. Geometrical and physical characteristics of such plates are close to 
those used by Langley [13]. 
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The following parameters will not vary during the numerical tests: Young modulus 
E=2ell N/m2, mass density p=7800 kg/m3 et v=0.3. The width of the plates is taken 
equal to 1 m. The summary of the numerical tests is given below. Let us note that five 
computation have been made for each case. The numerical computation of the "exact" 
solution which is given using the classical direct stiffness method, but also the energetic 
predictions of the four considered energy methods. 

4.2. DAMPING INFLUENCE 

The damping influence is an important way to qualify the reverberation of tested plates. 
In the following simulation, three damping cases are tested. Note that the considered 
plates are assumed to have similar damping ratio. The overall characteristics of the 
plates tested are summerised in Table 1. 

Two kinds of computations are achivied regarding to the nature of the excitation 
source. In the first case, single point source is considered whilst the second case deals 
with multi-point source. 

TABLE 1. Plates characteristics : study of the damping influence 
Plate 1 Plate 2 

Length Thickness n Length Thickness V 

Case 1 1.2 in 4 nun 1 % 0.7 in 3 min 1 % 

Case 2 1.2 m 4 mm 5 % 0.7 m 3 mm 5 % 

Case 3 1.2 in 4 mm 10 % 0.7 m 3 nun 10 % 

The frequency range is fixed in the band [125 Hz - 16000 Hz]. The exact result 
required 200 interpolating functions. The WIA results is computed following the 
indications given in [2], and seems to converge using three angular interpolating 
functions. Finally, the DSEM is computed using a semi-analytic result from a dynamical 
stiffness energy based calculation. 

4.2.1. Single point source case 

Energy ratio: single point source and 1 % damping 
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Figure 1. Energy ratio comparison in 1% damping case: "-" exact energy ratio values, 
"-a-" DMES energy ratio values dr "-*-" 1MES energy ratio values. 

Energy ratio: single point source and 5% damping 

Figure 2. Energy ratio comparison in 5% damping case: "—"exact energy ratio values. 
"-()-" DMES energy ratio values & "-*-"IMES energy ratio values. 

The first presented case considers single point source. In this case, the plate 1 is excited 
in point (0.595 m; 0.54 m), the energy is calculed in point (0.9 m; 0.25 m) of plate 1 and 
in point (0.59 m; 0.75 m) of plate 2. Figures 1 to 3 show the comparison between exact 
energy ratio and those calculated from (DSEM) and (ISEM). The (SEA) and (WIA) 
results are not computed as the energy equi-repartition is not guaranteed in this case. 

Energy ratio: single point source and 5% damping 

Figure 3. Energy ratio comparison in 10% damping case: "--" exact energy ratio 
values. "-0-" DMES energy ratio values di- "-*-" IMES energy ratio values. 
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Figures 2 to 4 show the general adequation of the simplified energy predictions with the 
exact results. Hence, (DSEM) and (ISEM) give from a radicaly different formalism very 
close results. It can be also seen that the obtained results are in good agreement with the 
expected averaged exact results for reverberant and non reverberant case. 

4.2.2. Multi-paint source case. 

In this case, eight point sources are considered, in order to approach the delta-correlated 
random loading required specially by (SEA) and (WIA). Indeed, it is known that the 
exact calculation to delta-correlated source is equal to the result which is obtained when 
the response is averaged over the ponctual load. Here, the following point sources are 
(dimensions in m): 

(0.595;0.540) (0.595;0.300) (0.400;0.600) (0.400;0.500) 
(0.850;0.750) (0.850;0.700) (0.230;0.450) (0.230;0.900) 

The results presented in the following figures shows a comparison between the 
energy methods presented in the begining of this paper and an averaged exact result. The 
exact result is obtained as an average value over eight ponctual loads and over the energy 
at eight points in each considered plate. A third octave band and an octave band 
frequency average of the obtained results is then computed. 

Energy ratio: multi-point source and 1% damping 

10 
frequency (Hz) 

Figure 5. Energy ratio comparison in J% damping case: "--" exact energy ratio values. 
'-.-' thirth octave band exact results. '--' octave band exact result. --' SEA result, '-x-' 

WIA results. "-«-"' DMES energy ratio values & "-*-" IMES energy ratio values. 

The comparison between the energy predictions and the frequency averaged results 
for 1 % damping ratio show that (DSEM), (ISEM) and (SEA) give very close results. 
This remarks, according to the authors experience, seems to be valid for a great number 
of tested reverberant cases. The (WIA) result seems to follow better the third octave 
band result in this case. 
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Energy ratio: multi-point source and 5% damping 

5-10 

-20 
10' 10 

frequency (Hz) 
10 

Figure 6. Energy ratio comparison in 5% damping case: "-" exact energy ratio values. 
'-. -' ihirth octave hand exact results. '-' octave band exact result. '--' SEA result, -x-' 

WIA results, "-o-"DMES energy ratio values # "-*-" 1MES energy ratio values. 

For 5 % and 10 % damping ratio, the tested systems are less reverberants. In this 
case, an energy accurate prediction is obtained using (DSEM) and (ISEM). The 
predictions of those methods are once again very close (around 2 dB of discrepancy). 
Those energy methods seem to give better predictions than (SEA) and (WIA). We verify 
the deficiencies of (SEA) and (WIA) in the case of non reverberant structures. 

Energy ratio: multi-point source and 10% damping 

-S'  

-10 

-15 

-25 

-30 <— 
10" 10' 

frequency (Hz) 

Figure 7. Energy ratio comparison in 10% damping case: "--" exact energy ratio 
values. '-.-'thirth octave band exact results. '-'octave band exact result. '—'SEA 

result. '-X-' WIA results, "-o-" DMES energy ratio values & "-*-" IMES energy ratio 
values. 
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5- CONCLUDING REMARKS 

Four energy methods have been presented, performed and compared in the cases of two 
coupled plates and three coupled plates. The conclusions are, regarding to numerical 
simulation presented in this paper: 

* (SEA) and (WIA) provide good results when the structures are sufficiently 
reverberant, but overestimate the energy levels without giving the correct trend, when 
the structures are not reverberant. (WIA) improve (SEA) results for reverberant coupled 
plates. 

* (SEA), (ISEM) and (DSEM) give very close results for reverberant coupled plates. 

* (DSEM) and (ISEM) give accurate energy levels and provides good asymptotic 
trends. It provides suitable results in both reverberants and no reverberant 
configurations. Moreover, (DSEM) and (ISEM) allow a spatial determination of high 
energy field. 

An important addition to the present work would be the comparison of the predicted 
energy levels with experimental results. This investigation is in progress and will 
provide a check of the energy assumptions. 
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SOME ENERGY RELATIONS FOR MECHANICAL SYSTEMS 

YU.I.BOBROVNITSKII 
Mechanical Engineering Research Institute of Russian Academy of 
Sciences, M.Kharitonievski, 4, Moscow 101830, Russia 

1. Introduction 

A damped linear NDOF mechanical system vibrating harmonically under the action of 
external forces is considered. The goal is to derive some relations between various 
quadratic vibration characteristics-energy, power flow and others. These relations turn 
out to be useful for estimating SEA parameters of the system via data measured on a 
part of the system DOF's. 
The approach used is based on the representation of a linear quantity (displacement, 
force, etc.) by a sum of two independent alternating in time components (sine- and 
cosine-components) and a quadratic quantity by three independent components: direct 
one and two similar alternating components of double frequency. The relations 
obtained connect the components of various linear and quadratic quantities. 
Two applications are presented. In the first one, a physical meaning of the famous 
Maxwell-Betty reciprocity theorem is given. It is shown that, for harmonic motion, the 
theorem means the equality of the alternating components of the cross power flow of 
two sets of external forces. In the second application it is shown how to calculate the 
total energy, loss factor and other characteristics of the whole system driven on a part 
of DOF's using only the responses measured at the driven points. 

2. Representation of the vibration field characteristics 

We consider a linear system with n DOF's whose vibrations are described by a matrix 
equation 

Mü(f) + Cü(0+£u(0 = f(0 (D 

where M, C and K are mass, damping and stiffness nx»-matrices with real- 

valued elements, u(t) = [u{(t),...,u„(t)]T is a «-vector of displacements, 

t(t) = [f(t),...,f„(t)]T is a vector of the external forces, T means transposition. It is 

assumed that all three matrices in Eq.(l) are symmetric, i. e. there are no gyroscopic 
elements in the system. The damping matrix C is not proportional to M or K. The 
equation (1) thus models rather general mechanical system. 



We confine the consideration to time harmonic motion of frequency to   Beside the 
complex representation commonly used in mechanics and acoustics 

f(0 = ReCfe-*"'),   u(0 = Re(ue-to') (2) 

with the complex amplitudes 

f-[/„-./.f. »=K-,«,r> <?) 

the real-valued representation, taken from electricity, is also used: 

f (r) = f,. cos cor+f, sin at, (4) 

u(0 = uc coscof+u, sincof, 

where fc   and uc, are n -vectors with real-valued elements. Complex amplitudes (3) 

relate to cosine- and sine-amplitudes in representation (4) as 

f = fc+/f,,   u = uc+;u,. (5) 

We also use the velocity vector v(f) represented in the same manner 

v(0 = Re(ve"'°") = v„ coscof + v, sin cor, 

where 

V=-/COU = V,.+7"V, ,    vc=cou,,    v,=-cou,.. -(6) 

Substitution of the representations (2)-(6) into Eq.(l) gives the relation between the 
external forces and responses,      in the complex form: 

f = Zv,   Z = C+iX,   X = —K-a>M, (7) 
(0 

where Z is the impedance matrix with complex entries, 
and in the real form: 

fc=Cvc-Xv,,   f,=Xyc-Cv,, (8) 

where the resistance(damping) matrix C and the reactance matrix X have real-valued 
entries. 
The following vibration energy characteristics will be considered further. 
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and in the real form: 
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where the resistance(damping) matrix C and the reactance matrix X have real-valued 
entries. 
The following vibration energy characteristics will be considered further: 



where v* is the Hermittian conjugate for v , i. e. complex conjugate plus transposition. 
The real part of the complex power flow is the direct component (11), and 

F,=(jT
ef,-r:t.)l2 (16) 

is the so called reactive power flow. The latter does not relate to any physically 
meaningful part of the instantaneous power flow (10) and cannot be obtained from the 
direct and alternating components (11) and (12). It characterises the part of the 
velocity vector v(r) which is in quadrature with the external forces. Thus the power 
flow is represented by four independent real-valued characteristics F0, Fe, Fs and Fq. 

The first three are the components (one direct and two alternating) of the instantaneous 
power flow, the fourth one reflects phase property of response with respect to the 
external force (see next section). 
Other quadratic quantities (9) can be represented in the similar manner. However, 
unlike the power flow, they all have zero reactive component and thus are described by 
three real-valued components—one direct and two alternating components. 
For example, for the kinetic energy these components are 

r0=(v^A/vc+v[Mv,)/4, 

Tc=(vT
eMyc-vT,Mv,)l4, (17) 

T,=vT
cMv,/2, 

Tq = 0. 

They can also be expressed through the complex amplitudes of velocity (6): 

T = Tc+iT, = yTMy/4,   r0=v*Mv/4, (18) 

etc. 

3. Relations between the energy characteristics 

If the equations (7), (8) are substituted into the equations for various components of the 
energy characteristics (9), i. e. into equations (11M16) and others, one can express 
these components through the velocity amplitudes v,., v, and v and the system 

matrices M, C, K and obtain equations similar to Eqs (17) and (18) (they are 
omitted here to save space). When all these equations are compared, the following 
relations can be derived: 

?<, = %> 
Fc = <DC + 2©£,, (19) 

Ft=Q.-2mEe, 
Fq = -2aL0. 



F(t) = vT(t)f(t) — power flow into the system, 

T(0 = -vr(OA/v(0 — kinetic energy, 

W{t) --uT(f)A'u(f) — potential energy, (9) 

E(t) = T{t) +W(t) — total energy, 
L(t) = 7X0 - W(t) — Lagrange function, 

0(0 = vr(OCV(0— loss power. 

Each of these quadratic quantities as a function of time can be represented as a sum of 
three components. Let's consider the power flow into the system. Substitution of 
Eq. (4) into the first equation (9), after the obvious trigonometric manipulations, yields 

F{t) = vr(Of (0 = Ft +FC cos2at + Fssin2ra/, (10) 

where 

/ro=«fc+v:fj/2 (ID 

is the direct (time-averaged) component, and 

Fc=(yTJc-yT,i,)l2, (12) 

^=(vIf,+v[fc)/2 

are the amplitudes of the cosine and sine alternating components of double frequency. 
The three components in Eq. (10) are independent in the sense that they are orthogonal 
in the time interval In /co . For the alternating components a complex amplitude can 
be introduced by analogy with Eq. (5): 

F=Fc + iF,;   Fccos2at + F1sm2cot = Re(Fe-21""). (13) 

It is easy to verify that this complex amplitude is simply a product of the complex 
amplitudes of the velocity and the force (5) 

■F=l*rt = Fe+iF,. (14) 

In literature the complex power flow is often used 

F' = -y't = F0 + iF<l, (15) 





The first relation (19) is evident from the physical point of view: the time-averaged 
power flow F0 into the system is equal to the time-averaged power dissipated in the 

system, O0. The next two relations (19) say that the alternating power flow 

components, Fc and Fs, not only supply the dampers in the system by the energy but 

also cause the variations of the total energy Ee and E,. The last relation (19) gives a 

physical meaning to the reactive power flow Fq: it is proportional to the time-averaged 

function of Lagrange L0, i. e. to the difference between the averaged kinetic energy 

and potential energy, L 0 = 7", - W0. It is known that the averaged kinetic energy r0 is 

equal to the averaged potential energy W^ only at the natural frequencies. When 
r0 > WQ , the system behaves with respect to external forces as mass-controlled, when 

L 0 < 0, its behaviour is spring-controlled. Hence, the reactive power flow Fq, 

according to Eq. (19), can be considered as a measure of closeness to a resonance. 
It is worth noting that the first three relations (19) are equivalent to the energy 
conservation law 

m=*MH+<Ht) (20) 
dt 

Equations (19) can also be represented in the complex form as 

F=<D-/2co£,   F = <D„-i2coZ,0, (21) 

where F and F are given in Eqs (14) and (15), and <D = <D, + /O,, E = Ee+ iEs are 
the complex amplitudes of the alternating components of the loss power and total 
energy of the system. 
A number of useful energy relations can be derived by considering vibrations caused by 
two groups of the external harmonic forces, f (l)(0 and f (2)(r), of frequency co . 
When these forces act separately, the response velocities are v(l)(f) and v(2)(f), and 

when they act simultaneously, f (0 = f (1)(f)+f (2)(f), the response, due to linearity of 

the system, is a sum: v(f) = v(1)(f)+v(2)(r). The power flow in the latter case is 
composed by four terms 

F(t) = \T(t)-f(t) = Fu(t)+Fn(t)+F,2(t) + F2l(t), (22) 

where terms F"(0 and Fn(t) correspond to separate action, and terms 

^(0 = [v(1'(0ff(2)(0,   F21(0 = [v(2,(0ff0)(0 (23) 

are the instantaneous cross power flows. 



Each term in the right hand side of Eq. (22), including the cross terms (23), can be 
represented as a sum of the direct and the alternating components like in Eq.(lO). 
With the help of equations (7), (8) one can express all the components of the energy 
characteristics (9) through the system matrices M, C, K and the velocities v(

c';
2). 

Omitting the cumbersome manipulations, one can derive the following relations 
between the cross-energy characteristics: 

A]/-A?=Ot   A
l?+A*=0 (24) 

for ; = 0,c,s and A = T, W,E,L,<&—seeEq. (9); 

/f-F2I=0,   F}2-F?=0; (25) 

Fo
,2+^,=2O)I

0
2,   F»-F? = 2<t;2. (26) 

The relations (24)-<26) establish all possible reciprocity properties of the system under 
study. One of these properties is considered in the next section. 

4. Physical meaning of the Maxwell-Betty's reciprocity theorem 

In its very general form the reciprocity principle in mechanics and acoustics can be 
formulated as follows[l]: the response of a linear system to a harmonic concentrated 
force will not change if the driven and observation points are interchanged. 
Mathematically, this principle is usually written in the form of reciprocity theorems 
which relate responses of the system to two arbitrary groups of external forces. One of 
such theorems, the famous Maxwell-Betty's theorem, can be written, for the NDOF- 
system under study, as the equality[2] 

[u(1)f f(2> =[u(2>]rf» or [v(,)f f(2) =[v<2)]rf(1), (27) 

where fü) are the complex amplitudes of two groups of external forces, and u^', v0) 

are the complex amplitudes of displacement and velocity of corresponding responses, 
j = 1,2. The physical meaning of the theorem is obvious for static (co = 0): The first 
Eq. (27) is equality of the cross-works of the two groups of forces [2], but in dynamics 
the meaning is not so obvious and, to the author's knowledge, has not been discussed 
earlier [3]. 
Here we demonstrate that the Maxwell-Betty's theorem (27) physically means the 
equality of the alternating components of the instantaneous cross-power flows for two 
groups of external forces. 
To prove this statement it is sufficient to show that the second equation (27) is 
equivalent to the relations (25). As it is seen from the Eq. (14), left-hand side of the 
Eq. (27) is the complex amplitude F12 of the alternating component of the cross power 
flow (23): F12 = F]2 + iF]2. The right-hand side of Eq. (27) is the complex amplitude 



of an alternating component of F21 = F2i + iF2]. Thus, the Maxwell-Betty's theorem 
(27) is the equality of the complex amplitudes of the alternating components of the 
cross-power flows. 
As it can be seen from Eq. (26), the relations between the direct and the reactive 
components of the cross-power flows are more complicated. In the simplest case, when 
the system is lossless, the reactive components of the cross-power flow are equal, and 
the direct components have opposite signs. 

S. A structure driven at one or several points 

In this section, a finite linear structure driven at one or several points by harmonic 
forces is considered. It is supposed that a NDOF model of this structure (i. e. the 
matrices M, C, K in Eq. (1)) is not known. Available (measured) are only the 
external forces and the response (velocity) at the driven points. The question which is 
discussed here is the following: what can be said about the vibration field of the whole 
structure and, specifically, is it possible to estimate the total vibration energy of the 
structure and its loss factor using only the data measured at the driven points? 
As it is shown below, the answer is: some energy characteristics can be exactly 
calculated from these data, some cannot. For the latter characteristics approximate 
estimates are proposed. 
To use the relations obtained above we assume that the structure can, in principle, be 
modelled by a NDOF-system of the type as in Eq. (1). For simplicity we consider the 
case when only one external harmonic force acts upon the structure (let it be /, (f) 
acting as the first DOF of the model) and the only known response is the velocity v, (r) 
of the first DOF. Thus the problem is to compute the time averaged energy 
characteristics (9) using only the functions /, (f) and v, (r) as input data. 
Using these input data, i.e. the complex amplitudes of the force and the response, /, 

and v,, and their sine- and cosine-amplitudes, one can immediately compute: 

- complex input impedance: zin
=f\^vi @8) 

as a function of frequency, 

- the instantaneous power flow into the system:     F(t) = /, (t)v ] (0 

and all the quantities related to it, i. e. the real-valued components F0, Fc, F,, Fq or 

their complex equivalents F =/,v, = Fc + iFs and F' =/,v * = F0 + iFg. 

From these data, using the relations (19) one can obtain exact values of the loss power 
4>0, i. e. the energy dissipated in the structure during one second, and the time 
averaged Lagrange function, i. e. the difference between the averaged kinetic energy an 
the averaged potential energy: L 0 = T0 - W0. Unfortunately, that is all that can be 



calculated exactly. The most needed in practice characteristics—the time averaged 
total energy E0 and the loss factor of the structure 

T| = «D0/<DE0 (29) 

do not relate to the input data directly. So, in what follows, two methods for estimating 
these, based on the obtained above relations, are presented. 
As it is seen from the second and the third relations (19), one can exactly compute the 
quantities (Ec - 0>, /2co) and (E, + <S>C /2co), i. e. the alternating components of the 
total energy contaminated by the damping terms. If the losses in the system are small, 
these additional terms can be neglected and the estimates for the alternating energy 
amplitudes are 

Ec=-F,ll<s>,   Ets-FJ2a, (30) 

£a;,=(^+£,2)"2=(Fc
2+^)"2/2co. 

Since the instantaneous total energy is always positive, E(t) > 0, the alternating 
energy amplitude cannot exceed the direct component E0. Hence, the inequality 

E0>Edt (31) 

gives a lower estimate for the time-averaged total energy of the system, while the 
inequality 

I1<2F0/(F/+^)"
2 (32) 

is an upper estimate for the loss factor of the system. 
Another estimates for the time-averaged total energy can be derived from the input 
impedance (28). As it is shown in [4], the total energy of the system equals 

Strictly speaking, this equation is valid only for lossless mechanical systems, for which 
the input impedance is purely imaginary. We propose here to use the Eq. (33) for 
estimating the time-averaged total energy E0 of systems with losses. Since the steady 
power flow F0 can also be represented via the input impedance 

^ro=TRe(/"1v;) = -|v1| Rer^, 



the loss factor (29) of the system can also be estimated through the input impedance as 

i, = -2Rezfc/In(<D^-). (34) 

Combining the expression for the time-averaged Lagrange function L „ (see the last 
relation (19)) with the estimate (31) or (33), one can also obtain estimates for the 
kinetic energy and the potential energy separately: 

T0s(Eo-F0/2(o)/2, (35) 
Wo = (Eo + F0/2o))/2, 

which characterise the velocity and strain amplitudes averaged over time and structure. 
The author verified the estimates (30>(35) in computer simulation on two mechanical 
systems: a single DOF-system and a finite free rod. The SDOF consists of a mass, 
spring and dashpot, the motion is described by one-dimensional equation (1). The rod 
executes longitudinal vibrations due to a harmonic force at one end and is described by 
the classical Bernoulli's equation of motion with the complex Young module[5]. 
The main results are the following. 
The best estimates give the equations (33)-(35). For the SDOF, they give the exact 
values of the energies and loss factor. For the rod, the estimates (33)-(35) are close to 
the actual values in all the frequency region excluding narrow bands around the natural 
frequencies of the rod which cause antiresonances with respect to the given force. 
Figure 1 shows the rod response at the driven point and Figure 2 presents the loss 
fector (29) as a function of frequency. It is seen that the estimate (34) is good 
everywhere but the bands near three antiresonant frequencies. The explanation is 
rather simple. Eq.(34) is exact for a lossless system and gives a good approximation for 
a damped system at frequencies where damping does not effect considerably on the 
input impedance. But at the antiresonant frequencies, the system behaviour is 
damping-controlled and Eq.(34) gives erroneous results. 
As for equations (31),(32), they give only one-side bounds and can hardly be used as 
estimates - see curve 3 in Figure 2. 
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Figure 1. Amplitude and phase of the rod response at the driven 
point vs frequency; the material loss factor is 0.01. 

Figure 2. The rod vibration loss factor vs frequency: 1 - exact, 
2 - estimate (34),    3 - upper bound (32). 
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The concept of energetic mobility is presented; its use on a single struc- 
ture and its use for an approximate prediction of the exchanged powers and 
of the local energies after rigid coupling, on an assembly is exposed. 
The concept of frequency averaged active power source is also proposed. 
Numerical simulations illustrate this method for two different homogeneous 
and heterogeneous substructures rigidly linked at several points. 

1. Prelude 

The energetic mobility finds its natural place at the cross point of three 
different trends: 
- the proposals to achieve a local energetic prediction on assemblies, that is 
not allowed by usual SEA (see [7], [6], [8]) 
- the wish of avoiding the description of the energy equations like those 
developed by [1], [9], often limited to simple homogeneous structures ... 
- the attempts to use exclusively frequency band averaged quantities, [14], 
[5], [4] which can better represent the properties of similar industrial struc- 
tures (see [13], [3], ...). 

2. Main scope and kernel of the method 

Let us assume an energetic additivity of the contributions of several local 
frequency averaged active powers Pe, injected at points e, on a separate 
structure, with linear behavior, to obtain the frequency averaged squared 
velocity ("FASV") at any point m, as follows: 

Ne 

<|Kn|2>«£#me-Pe W 
e=l 

where the brackets <> indicate a frequency average on the band A/ and 
Hme are the energetic mobilities. 
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On an assembly of two substructures S1 and Sn, rigidly coupled at Nc 

points, let us then develope the FASV at coupling points c (or k), as sum 
of the contributions of the external active injected powers Pe and of the 
exchanged ones Pk (the quantities after coupling are crown by a tilde ): 

<\vtf>*Y,Hipi+Y:HikPi (2) 
e=l fc=l 

and 
  Ni1          Nc   

< Iv/'|2 > « £ B'JPJ' + E HllH1 (3) 
e=l k=\ 

Our energetic connectivity, consists in writing, the following coupling 
relations at each rigidly coupled point c (or k), on S1 and on S11: 
- the frequency averaged squared velocities are equal 

< |V?|2 > = < \V?\2 > (4) 

- the frequency averaged active exchanged powers are opposite 

Pl = -Pll (5) 

Solving the above equations, one gets then the frequency averaged active 
exchanged powers, from the external injected ones, as: 

{Pi} » [H'A + Hli\_1 {{H&iPf1} ~ [HtiiPj}} (6) 

and the FASV at any point m, after coupling, for instance on S1, is: 

<|v^l2> «X: HLPI + E BLPI (7) 
e=l c=l 

Notice that relations (4) and (5) are exact, while relation (1) is not. 
Thanks equations (6) and (7) we are able to predict the frequency aver- 
aged kinetic energy density at any point of an assembly, using exclusively 
frequency averaged quantities of the uncoupled substructures, i.e. without 
any phase information between the loads (in fact we will see that the fre- 
quency averaged active powers injected at an uncoupled point are almost 
unchanged after coupling). 

3.   Energetic mobility for a separate structure 

The classical mobility    Yme = ^     (see [11]), on a structure with linear 
behavior, links the velocity Vm at point m to the load Fe at point e. 



THE ENERGETIC MEAN MOBILITY APPROACH (EMMA) 3 

We use the classical mobilities to define our energetic mobility Hme, 
between these points m and e, as follows: 

Hme ~ < Re{Yee} > 
(8) 

We will show now that this quantity represents a good estimation for the ra- 
tio between the FASV at point m and the frequency averaged active power 
injected at point e, Pe =< Re{FeV*} >. 

3.1.  SHORT DEMONSTRATION FOR HME « ^r^2- 

<\Y    \2X.\F l2> 
In fact our energetic mobility (8) can be written: Hme = <flefyJe}><|F,p> 
and, if we assume (or notice) that: 
H. 1 |Fe|

2 and \Yme\
2 are frequency uncorrelated 

H. 2 |Fe|
2 and Re{Yee} are frequency uncorrelated 

("frequency uncorrelated" means that the respective distributions of these 
functions in respect to the frequency are statistically independent) the prod- 
ucts of the means can be replaced by the means of the products: 

„    < lyTOel2|Fel
2 > 

hme ~ < Re{Yee}\Fey > [ ] 

The last equation is evidently another form of the researched one: 

Hme*  <\Vf> (10) 

3.2.  SHORT DEMONSTRATION FOR < \VM? >« EE=I HMEPE 

The energetic additivity also lets itself be demonstrated quite easily. 
We consider a separate structure loaded by Ne forces at points e (or f). 
The exact velocity obtained at point m is then given by Vm — Yle=i YmeFe 

and one writes the following exact expressions: 
- the frequency averaged squared velocity at point m is 

Ne Ne 
<|ym|2>=£(<|yroe|2|Fe|2>+  £   < Re{YmeFeY^F]} >)   (11) 

e=l f?e=l 

- the frequency averaged active powers injected at points e are 
Ne 

Pe  =< fle{yee}|Fe|
2 > +  E   < Re{FeF]Y:f} > (12) 
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Then, using the simply assumption that 
H. 3 Fe and Yme are frequency uncorrelated 
one can neglect the second terms of (11) and (12), (because one takes an 
average on values which oscillate about zero), compared to the first ones 
(which are averages of strictly positive values), and one obtains the two 
following relations: 

Pe=< Re{FeVe*} > « < |Fe|
2 > < Re{Yee) > (13) 

(using also H2) and 

Ne 

<|Hn|2>«E<ly-|2><l^|2> (14) 
e=l 

the last one can be further approximated by: 

Ne   <\Yme\
2>     <\Fe\

2> 
>~Z.<jRe{yee}><jRe{yee} > 

(15) 

where the energetic mobilities Hme appear, multiplied by Pe. 
The energetic additivity is nothing else as: 

< \Vm\2 > w £ Hme Pe (16) 
e=l 

This additivity means that it is possible to find a frequency averaged 
kinetic energy density, only in terms of frequency averaged active injected 
powers, i.e. without any phase information between the loads. 
Let us also notice that (13) means that the frequency averaged active powers 
are almost the same, when injected "separately" or "together". 

4.   Energetic mobility for coupled structures 

We consider now two structures, rigidly linked together at Nc points c (or 
k). Assumption H3 cannot hold, as the coupling forces Fc depend on Yce: 

im = [YC[+y/fc
;]-1 {[#/]{*?} - [YLMm)      (i7) 

More physically, we cannot assume that the exchanged powers act together 
as they were separate (as with the previous relation (13)) because they 
obviously don't exist without the external injected ones ! 
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The previous expression for some transfer energetic mobilities must be cor- 
rected to verify the energetic additivity, for each coupling point c : 
- on substructure S1, if the excited point e is different to c 

Hi -    < lycel2 >    al (18) 
*« - < Re{Ye{) > °e K   } 

- on substructure Sn, if the excited point e is different to c: 

ffll _      < \Yce 1    >      „II (IQ) 
H- - < Re{Y»} > ^ (19) ■•ce 

in all other cases (for any points m and e), as previous, 

TJI < \Yme\    > ,    jrll  _     < \*me\    > (0(\) 
H™ = < Re{Yje} >   and H™ ~ < Re{Yen) > (2°} me 

We use (for each coupling point) the following correcting factors: 

I Hl + Hl1 

EI <£$?>+H"+2 < Re{Y*} > 
and (also only in terms of frequency averaged quantities) 

(21) 

«" = 
H' + H" 

n! + H!'*$$j$ + 2<Re{Yc"} > 
(22) 

4.1.  HOW TO FIND THE CORRECTING FACTORS 

For one rigid coupled point c, if only subsystem S1 is externally excited by 
Fe, the exact frequency averaged exchanged power becomes: 

Then, assuming that 
H. 4 Yj and Yj1 are frequency uncorrelated 
one can neglect the second term in the following mean product 

< ReiYjYj1*} > = < ße{y/}i?e{yc
J/} > - < Im{Y^Im{Y^} > 

(because the product of the imaginary parts oscillates about zero, while the 
real parts are allways positive) and one replaces the mean product of the 
real parts by the product of the mean real parts: 
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< ReiYftReiY*1} > « < Re{Yj} >< Re{Yc
n} > 

Applying also HI, H2, H3, one gets the following approximate power : 

B „ -p   < K'.l2 >        1  
< Re{Y/} >   <|y/P><fle{y/}>    ,   <ICT>   +2< ResYn > 1   ei       <Re{Yj}><Re{YJI}> + <Äe{ye»}> + * < «cUc / -> 

(24) 
where some energetic mobilities appear again : 

^   ~     ^<Re{Yi}>Hl^r$L + Hn + 2<Re{Yj}> 

one recognizes then the previous correcting factor a[ and gets 

pi    ~        p     < lyci|2 > ^L_    „    _p gce (26) 

The last expression is conform to (6). The same factors ac were found 
analytically to work also for two coupling points. 
N.B. In the symmetric coupling of two identical substructures, assumption 
H4 does not hold, the correcting factors ac are not valid, but fortunately 
they are also not necessary in this case (see [12]). 

4.2.  THE CONCEPT OF MEAN ACTIVE POWER SOURCES 

We also must underline that the external mean active powers injected at 
uncoupled points, often can be considered as unchanged after coupling: 

K   «   Pe (27) 

In fact Pe =< Re{FeV*} > can also be written as: 
Pe «< Re{Yee} >< \Fe\

2 > 
and the mean input mobility at e is quite unchanged by coupling at c: 

< Re{Yee} >«< Re{Y7e} > 
Then, force sources are also "mean active power sources", because 

< |Fe|
2 >=< \Fe\

2 > implies Pe w Pe 

In the same manner, Pe =< Re{FeV*} > can also be written as: 
Pe «< Re{Zee} >< \Ve\

2 > 
Then we can affirm that velocity sources are also "mean active power 
sources", because 

< |Ve|
2 >=< \Ve\

2 > also implies Pe « Pe 

Let us conclude by a slogan: "we are all mean active power sources!". 
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5.   Numerical Simulations 

We will not submerge the reader with a detailed analysis of all the numerical 
cases treated to better understand the concept of energetic mobility; our 
wish is now to simply illustrate the different possibilities announced in the 
previous analytical part, through some numerical samples. 

fo~n el 

Figure 1.    Simply Supported plates, alone or rigidly coupled 

5.1.  ON A SINGLE STRUCTURE 

We compare (in Figure 2), on an homogeneous thin supported plate, the 
energetic mobility Hmei and the ratio between the FASV at point m and 
the frequency averaged active power injected at point el, when the plate 
is loaded at three points. We do this for two types of loads: force sources 
and velocity sources.   We can also report that increasing the structural 
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0.0001 
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a) for force sources b) for velocity sources 

Figure 2.    Comparison between Hmei and the ratio <Rejf"1v« }> 
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damping, reduces the differences ("error on the definition"). 
We further can compare (in Figure 3) the result of the energetic additivity 
with the exact calculation of the FASV at a point m. 
Data of plate PI are in appendix; results are similar at any other point. 

500 10001500 2000 2500 3000 3500 4000 4500 5000 
f[Hz] 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
f[Hz] 

a) for 3 force sources b) for 3 velocity sources 

Figure 3.    Comparison between the exact < |Vm|2 > and the one given by (1) 

We can report again that increasing the structural damping, also increases 
this "error of the energetic additivity" in the high frequency domain, where 
the classical mobilities become smoothed; on the other hand, increasing the 
bandwidth reduces this error. 
This indicates that the error depends on the number of fluctuations in the 
averaging frequency band, rather then on the modal overlap, or on the 
modal density: another logic as the usual one applied to energetic problems 
is here required to handle to the energetic mobilities. 

5.2.  ON AN ASSEMBLY OF TWO DIFFERENT SUBSTRUCTURES 

We take now two simply supported plates, PI, identical to the previous and 
P2, for times thicker and something smaller. Three rigid links are taken at 
points cl, c2, c3. Two forces load at points el and e2, on PI (see appendix). 
We compare (on Figure 4) the exact FASV after coupling at c2 (the worst 
result), with those obtained by (6), at coupling point c2. 
Better results are obtained at the others coupling points (for instance cl) 
and at others uncoupled points (for instance m on P2). 
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Figure 4.    Comparison between exact and energetic calculations: the worst case 

5.3.  ON AN ASSEMBLY OF TWO DIFFERENT, HETEROGENEOUS 
STRUCTURES 

We add on PI some point attached masses, link PI to P2 and perform the 
same calculations, as in the previous case (see Figure 5). This case is quite 
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500 100015002000 2500 3000350040004500 5000 
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a) Exchanged power at c2 b) Comparison on < |V^2|
2 > /2 

Figure 5.    Comparison between exact and energetic calculations: PI heterogeneous 

complete: we can analyse the coupling at one heterogeneity, the load on 
one heterogeneity and all the possible transfers involving an heterogeneity. 
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el 
j^#- - e2j|(- - x   m2~ 

c2 o  

Figure 6.   Heterogeneous plate PI rigidly coupled to plate P2 

Results at the uncoupled points are also goods (Figure 7), even when we 
compute the FASV directly at the point of the heterogeneity (point ml). 
Compared to the case of homogeneous structures, the errors do not in- 
crease sensibly in general: the EMMA works well even for heterogeneous 
structures. 
This is very interesting because all the methods based on energetic equa- 
tions have difficulty in this case. 
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a) Comparison on < |Vmi|2 > /2 b) Comparison on < |Vm2|
2 > /2 

Figure 7.    Comparison between exact and energetic calculations: PI heterogeneous 
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6.   Conclusions 

The energetic mobility links the frequency averaged (f.a.) active injected 
power at a point to the f. a. squared velocity obtained at another point. 
An energetic additivity allows one to calculate the f. a. squared velocity 
obtained at a point m loading a structure at several points e, using exclu- 
sively the f.a. active injected powers, that is to say, without any phase 
information between the loads. 
A general energetic connectivity allows one to predict f.a. quantities, 
like the local squared velocities and the local active exchanged powers, on 
an assembly, only as function of the f.a. quantities on each substructure, 
before coupling (point injected powers or squared velocities). 
The f.a. active power injected at an uncoupled point, is found to be almost 
unchanged by coupling, whatever are the forces. We can then consider any 
loading system as a "mean power source". 
The Energetical Mean Mobility Approach (EMMA) is approximate but ap- 
plies quite well even to heterogeneous structures, because its ingredients 
are the classical mobilities, which can furthermore be directly measured on 
industrial systems. EMMA is also quite robust because it uses only fre- 
quency averaged quantities, which vary less on similar industrial systems. 
An experimental application of the method will be soon presented and the 
sensitivity to some parameters will be also described. 
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Appendix 

DATA USED IN THE NUMERICAL SIMULATIONS 

Plate PI. Dimensions: Lx = 1.0[m], Ly = 0.7[m], h = 0.001[m]; 
Material: p = 7800[fc5/m3], E = 2.1101l[Pa], v = 0.33, r\ = 0.01. 
Modal density: 0.2; modal overlap: 0.4 to 10.8; nomber of modes: 40 to 47; 
mean wavelength A =0.22 to 0.046 [m] for 200 Hz wide frequency bands. 
Loaded points: el(0.4;0.2),e2(0.7;0.3),e3(0.5;0.6).Measured point m(0.2;0.5). 
Force sources: Fe = 1/Yee and velocity sources: Ve = l[m/s]. 
Plate P2. Dimensions: Lx = 0.9[m], Ly = 0.7[m], h = 0.004[m]; 
Material: p = 7800^/m3], E = 2.1101l[Fo], v = 0.33, rj = 0.01. 
Modal density: 0.05; modal overlap: 0.08 to 1.3; nomber of modes: 8 to 11; 
mean wavelength A =0.44 to 0.09 [m], for 200 Hz wide frequency bands. 
Assembly of PI and P2. 
Coupling points (the same on both plates): cl(0.2;0.5),c2(0.4;0.2),c3(0.7;0.3). 
Measured points: m2(0.5;0.6) on P2 and ml(0.6;0.3) on PI; loaded points 
el(0.5;0.6), e2(0.4;0.4) on PI. Constant unit loading forces Fe = 1[N]. 
Mean active injected powers given by Fe =< Re{Yee] > (i.e. considered as 
separate sources). 
Plate PI with point attached masses: 0.1kg at point cl(0.2;0.5), 0.2kg at 
point el(0.5;0.6) and 0.5kg at point ml(0.6;0.3). 
The excited and linked points are unchanged, so are the external loads. 
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Common experience indicates that SEA predictions tend to become more accurate as 
damping levels increase and are more accurate for subsystems which are irregular. 
This paper discusses some reasons for this behaviour and suggests measures by which 
these effects can be quantified in terms of wave or modal parameters. These reasons 
involve wave coherence, global mode localisation and orthogonality of global modes 
within each subsystem. Particular reference is made to the SEA of a system 
comprising two, coupled subsystems and numerical examples are given for the case of 
two coupled plates. 

1. Introduction 

Inaccuracy of SEA predictions can be attributed to two main causes. First, the 
fundamental underlying assumptions in SEA may fail, so that the SEA equations may 
not predict the frequency and ensemble average behaviour of the system under 
consideration, even over wide bandwidths. When this is the case, the system is said to 
be strongly coupled, while the SEA equations hold for a weakly coupled system. 
Secondly, there may be large variability between the frequency average response for a 
particular realisation of the system and the ensemble and frequency average of SEA. 
This may be due to averages being taken over relatively narrow bands (finite 
frequency band averaging effects) or perhaps to there being only modest levels of 
uncertainty in the system (so-called mid-frequency range effects). In this paper only 
weak/strong coupling issues are of concern, with frequency averages assumed to be 
taken over a frequency band fl which is wide, containing many modes of vibration. 

It is as well to emphasise the difference between strongly (weakly) coupled and 
well (poorly) coupled subsystems. In this paper two subsystems are said to be well 
coupled if energy can pass freely through the coupling between them - typically the 
transmission coefficient of their coupling is large and so, too, is the appropriate 
coupling loss factor. Strong or weak coupling, on the other hand, gives an indication 
of the qualitative nature of energy flow through a system and depends not only on 
coupling transmission but also on energy dissipation within the subsystems - typically 
this depends on the relative magnitudes of coupling and damping loss factors. 



2 B.R. MACE, PJ. SHORTER 

Damping can be quantified in terms of loss factor i), modal overlap M (here, M = 
nA is the product of the asymptotic modal density n of the structure and the half-power 
bandwidth A) or the decay in amplitude experienced by a wave as it propagates 
through the system. As damping increases so the system becomes more weakly 
coupled and SEA predictions tend to become more accurate. When weakly coupled 
the system response depends only on the gross subsystem properties (area, modal 
density etc.) and energy flow though a coupling depends only on local system 
properties. When the coupling is strong (i.e., when the damping is light enough) the 
response becomes dependent on the detailed properties of the subsystems under 
consideration (specific shape etc.) and energy transmission depends on global 
properties. Hence system detail, and subsystem irregularity, become important. 
Irregularity, be it in geometric or physical properties, is a somewhat nebulous 
quantity: systems may appear more or less irregular, but quantifying the degree of 
irregularity is less straightforward. 

In the next section a wave interpretation is reviewed. Here the strength of 
coupling depends on the coherence of waves incident on the coupling between two 
subsystems. Damping and irregularity both decrease these coherence effects. This is 
followed by a discussion in terms of the global modes of the structure. In this case 
damping effects are described in terms of modal overlap, while irregularity is 
quantified in terms of global mode localisation and the orthogonality of global modes 
within each subsystem. Finally this global mode view is rephrased in terms of 
subsystem or local modes. 

Particular reference is made here to the SEA of a system comprising just two 
subsystems, a and b, which have the same (small) loss factor. Subsystem a is excited 
by "rain-on-the-roof" excitation. The SEA equations relating ensemble (and 
broadband frequency) averages are 

Pins,=(Wßa+Pab',    0 = ÖWjEj, + Pba\    P^ = CÜT^E« -fiWfcflE» (1) 

where Pin and P^ are the input and coupling powers, E the subsystem energy, to is the 
centre frequency and rj^ is the coupling loss factor. Furthermore ««rfcj = nbf]ba. 
Numerical examples are presented for a system comprising two plates, coupled along 
a straight edge and with all edges simply supported. Irregularity is introduced by 
allowing the plates to have varying shapes while their gross properties (e.g., their 
areas, which are fixed in the ratio 1:1.4) and the length of the coupled edge (0.9) 
remain constant. An analytical solution exists for rectangular plates [1], other results 
being predicted from traditional SEA [2] and from finite element calculations [3]. 

2. Irregularity, Damping and SEA: a Wave Perspective 

The failure of SEA can be described in terms of wave coherence [4]. Consider the 
line of coupling between two, 2-dimensional subsystems a and b as shown in Figure 1. 
Time harmonic waves a* and b" are incident on the coupling at an angle 8 and at 
frequency <o.   (For simplicity it is assumed that the subsystems have the same 
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wavenumber.) They give rise to transmitted and reflected waves where, for example, 
<»" = roa(0)fl+ + t{0)b~ • If the coupling is conservative then [4] 

p   — p    — p 'ab ~ 'sta      'coh ' 

P     — T^ P.       — T^ P. 'tea ~ L    'ine,a      l    '• 
(2) 

incjb 

where ?„a is the coupling power assumed in 
the normal wave approach to SEA [2], P,„M 

and PiMjb are the incident powers and 
T(e)=\t($)\. The coherent power 

p„A=i('r«VV+f*rfla
+&-*)       0) 

Figure 1. Wave tnnsmiuion and reflection 
at a boundary between two tabtyaten». 

depends on both the amplitudes of and the relative phase between the incident waves, 
* denoting the complex conjugate. Generally waves are incident at all angles 0, the 
powers then being integrals over 0. 

For discrete frequency excitation of a specific system by a single source, the wave 
amplitudes are of course coherent. In the traditional wave approach to SEA [2] it is 
assumed, however, that the frequency average coherent power <PCOh>a is negligibly 
small (o denotes an average quantity). The argument for making this assumption 
arises from the observation that the relative phase between a* and b~ typically varies 
very rapidly with frequency. Similarly the ensemble can be defined by assuming this 
relative phase (and perhaps other dynamic properties) is random. One might then 
assume the average coherent power is negligible. 

The frequency or ensemble average coherent power can, however, be very 
substantial, so that P^ becomes an inaccurate estimate of Pa* The coupling is then 
strong, in a wave sense. This is because the incident waves are caused in part by 
reflections of the outgoing waves from distant parts of the structure. Certain 
frequencies, and hence certain values of the relative phase, correspond to system 
resonance, and hence large wave amplitudes, and give a disproportionate contribution 
to the frequency or ensemble average coherent power. If both outgoing waves 
produce significant reflections then <?„*> can be very substantial. 

The average coherent power is always positive and is found to depend on a 
coupling strength parameter /where 

HaVb 
(4) 

and where, for a given 0, fa* relates the amplitude of an outgoing wave to that of its 
reflection from distant parts of the structure, which later returns to the coupling (e.g., 
I6~(ö)=exp(-|i6(0)) lft+(0>). If y»\ the coupling is strong: waves are transmitted 
well, attenuated poorly and transmission through a coupling depends on the global 
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properties of the structure (i.e., reflections from parts distant from the coupling). The 
coupling power is predicted poorly by P„a. Weak coupling, on the other hand, occurs 
if y«l. Attenuation is relatively strong, transmission relatively weak and local (i.e., 
coupling) properties determine local transmission. Now the traditional wave approach 
to SEA gives accurate predictions. In general waves are incident at all angles 9, and 
max()(fl)) gives a somewhat conservative estimate of the overall strength of coupling. 

Increasing damping increases p (since waves attenuate more rapidly as they 
propagate) and hence decreases y, the strength of coupling and <?«,*>. Increasing 
irregularity scatters some of the energy carried by a wave leaving the coupling at 
angle 0 into wave components which propagate in different directions. Hence the 
coherent reflection which arrives back at the coupling at the same angle 9 is decreased 
and so, too, is the consequent contribution to <?«*>. The relative phase of waves 
incident at different angles varies along the line of coupling, so that they give very 
small contributions to the total coherent power, this being the integral along the line of 
coupling. Thus yincludes the effects of both dissipation and subsystem irregularity. 

In principle, reflection coefficients can be calculated numerically for couplings and 
subsystems. For the case of rectangular plates this is straightforward. The response is 
then found by a Fourier series decomposition into components with specific trace 
wavenumbers [1], each trace wavenumber component being transmitted, reflected and 
propagating without being scattered into other trace wavenumber components. In this 
sense, two rectangular plates can be regarded as the most regular of systems. Figure 2 
shows an example, where the coupling power is compared to the traditional SEA 
expression [2] as a function of UM = HJL9=Q). The value of A* at which max(^fl)) = 
)(0) = 1 is shown, this marking the transition from strong to weak coupling as n„a 
increases. For very low levels of damping the SEA estimate of coupling power from 
equation (1) tends to a value corresponding to equipartition of energy, namely 

V.   '" /tqutp 

»b 

««+«* 
(5) 

For high /*„<>» P& tends to a value 
independent of geometry and 
determined by the coupling loss 
factor. Clearly, coherence 
effects in the regular, rectangular 
system are very significant when 
the coupling is strong. 
Introducing non-uniformity into 
the end supports [5] or the 
coupling [6] causes a trace 
wavenumber component to be 
scattered into components of 
different directionality, the 
irregularity     thus     introduced 

Figure 2. Coupling power — theoty, rectangular plate» Ul; 
— traditional SEA [2];'" low and high fU limits.* )t = 1. 
Platepropeitiei: E«Xlell,prfe3.tM).3,thicknett=0.01. 
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causing the average coherent power to be reduced. 

3. Global Modes of Vibration 

In this section the response of a system comprising two subsystems is described in 
terms of the global modes of vibration. Expressions are developed for the time and 
frequency average input power and subsystem energies in terms of the mode shapes. 
The dependence of these quantities on system irregularity and modal overlap is then 
explored. It is assumed here for simplicity that the density is constant throughout the 
system, damping is proportional so that the response can be decomposed in terms of 
the undamped global modes of vibration, all modes have equal (small) loss factor r\ 
and that time and frequency average kinetic and potential energies are equal. 

3.1  GLOBAL MODAL DECOMPOSITION 

The response at point x2 per unit time harmonic force at point x\ can be written as a 
sum of global mode components as 

n(«,*i.Xa)=£a;(»)f/(*iV/(*2) (6) 
J 

where 0/x) is the/th mode shape and where 

is the modal receptance, ©;- being the y"th natural frequency. The mode shapes are 
assumed to be mass normalised so that 

S(xl>j{x)<l>k(x)dx = Sjk (8) 

where p is the density. The time average input power and kinetic energy density at x% 
are given by 

P*,(fl>.*i) = -^X>fo-(»v*/(x,) 
j 

DT{(0,Xl) = £pß)2|l<(ö>,X„*2)|
2 = £p>(fl>)[p 0,(*i)&(*,)lp *,(*2>*(*2)] (9) 

/?,*(©)=©2Re{ay(töK(ö>)}/4p 
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Note that the input power is a sum of modal contributions while the kinetic energy 
density depends on cross-modal terms. Typically ßpi<o) is very small if neither mode/ 
nor mode k is resonant at frequency a>, is moderate if one mode is resonant and very 
large if both modes are resonant 

3.1.1 Frequency average response 
Suppose now that broadband excitation of constant unit power spectral density acts 
over a bandwidth ß. Frequency averages of equations (9) can be taken, the frequency 
average kinetic energy density, for example, being 

(M*2))Q =Xl>[p ^fakfaflp ^foKM *> =H" lh«((o)d(o    <10) 

Note that if the damping is light then a; shows a distinct resonance peak around its 
natural frequency (Oj. Then r^ tends to be small except for those mode pairs j and k 
which are resonant in ß and which "overlap", i.e., whose natural frequencies lie 
within each others bandwidths. The terms 7} are necessarily large if q lies in ß For 
such resonant modes /}* closely approximates the integral over (0,<*>) and 

where A=w\ and where a is now the centre frequency of ß. 

3.1.2 Subsystem responses 
Let statistically independent excitations (i.e., "rain-on-the-roof") be applied at all 
points xi in subsystem a. The total kinetic energies in subsystems a and b are then 
found by integrating equation (10) over xi and xi and are given by 

J* J'k (12) 

where the integrations in ^t
(o,w are carried out over subsystems a and b respectively. 

The input power is given to a good approximation by 

(Pin)=2m,lrii¥^) = 2fl^(ra)+(rt» (i3) 
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3.2 DEPENDENCE ON IRREGULARITY AND MODAL OVERLAP 

Equations (12) and (13) indicate how the frequency average input power and coupling 
power {Pab) = 2aw?(7i) depend on the global mode shapes through the terms ^ab). 

These are here termed the kinetic energy distribution factors for the (j,k)'th mode pair. 
Since the mode shapes are mass normalised then 

rP+rP-i; rP+rjP-o.y** (14) 

For./ = lc, V^(o) indicates the proportion of kinetic energy stored in subsystem a when 
the system vibrates in the /th mode.   For j * k, yfjP gives a measure of the 
orthogonality of the mode pair over subsystem a. 

Equation (12) can be re-written as 

When the modal overlap M is small, the terms f]t are small and the first sum on the 
right of this equation dominates. The cross-modal terms become increasingly 
important as M increases. Some aspects of this behaviour will now be amplified and 
approximations developed assuming that /}* are given by equations (11). 

3.2.1 Low modal overlap - global mode localisation 
If the modal overlap is small (M « 1), the response (i.e., the kinetic energy, equation 
(15)) in the undriven subsystem is dominated by the terms /}■. Thus 

W-Ir^jfVf; ^-£ffi'w?) (16) 
J p«     2*rM 

This is in contrast to the SEA prediction in the strong coupling, equipartition limit (5). 
Large contributions to the response, and hence large contributions to the coupling 
power, arise from those modes for which the product V^V^ - V^)(l~¥r^>) *s 

large. Such modes are not only relatively well excited (i.e., %*a) large), but also 
respond relatively strongly in the undriven subsystem (i.e., ^6) large). Modes whose 
mode shapes are large only within one subsystem are localised within that subsystem: 
they are either weakly excited or respond weakly in subsystem b, and hence give only 
a small contribution to the response there. Thus ty^'V/0 indicates the degree to which 
the/th mode is localised within one subsystem or the other. 

If fjj is the same for all modes in Q, then the response for low M can be written as 
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(rJM>), 

Wfrf), 
(17) 

The localisation parameter X is related to system irregularity. It determines the 
response in the low modal overlap limit, is equal to 1 for highly irregular systems (for 
which the SEA equipartition estimate is accurate) and decreases as the amount of 
irregularity decreases. In terms 
of global modes, then, 
irregularity can be quantified 
partly by the degree to which 
global mode localisation occurs. 

Numerical examples. Figure 3 
shows frequency average power 
ratios for two-plate systems of 
different geometry found by 
finite element analysis [3] as 
functions of UM for a rectangular 
plate. Each plate is either 
rectangular (R), quadrilateral (Q) 
or pentagonal (P) in shape. Also 
shown are the rectangular plate 
and SEA theoretical predictions. 
For strong coupling (low enough 
Ha) plate shape is important. 

Figure 4 shows yrja) for the 
first 120 modes of the 2-plate 
system. Results for both RR 
(i.e., coupled rectangular- 
rectangular plates) and PP plates 
are given. There is a marked 
tendency for the RR global 
modes (i.e., the modes of the 
more regular system) to be more 
localised, in that the energy is 
stored primarily within one or 
the other plate (i.e., yü/a) is either 
small or large). The kinetic 
energy for each of the global 
modes of the PP plate system, on 
the other hand, tends to be more 
evenly distributed between the 
two plates.   Figure 5 shows the 

Figure 3. Coding power per unit input power ensemble averages: 

--• rectangular plates; - - - tradition»! SEA; 400 Hz frequency 
average», centre frequency 1 kHz, various plate systems. 

(») 
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Figure 4. Global mode localisation: a^<*) as a function of natural 
frequency/,, first 120 modes of (a) RR and (b) PP plate systems. 
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cumulative probability 
distribution for y£a) for the 
first 120 modes of each system. 
This illustrates again the 
tendency for global mode 
localisation to occur to a 
greater degree in the regular 
RR plates than in the irregular 
PP plates. The result of this is 
that the response in the 
undriven plate and the coupling 
power are substantially less for 
the RR plates in the low pk, 
low M region. Table 1 shows 
the localisation parameters A 
calculated for RR and PP 
systems. The values of A 
depend on the specific modes 
in ß, with A being consistently 
smaller for the regular, RR 
plates, for which P^ is then 
also smaller (Figure 3). 

3.2.2 Higher M - global mode 
shape orthogonality 
As   the   modal   overlap   M 
increases     so     cross-modal 
interaction     terms     become 
important, /}* being substantial 
for modes that overlap. Since §* monotonically increases, these cross-modal terms 
give negative contributions to both <f„p» and <7y>  (equation  (15)),  which 
consequently decrease as M increases. 

As M -* <x» then <Pa*> and <T*> -> 0 as one would expect. This can be shown by 
reordering the summations and integrations in equation (12) and noting that global 
mode shape incoherence implies 

RR plates PP plates 
Cti (b) (a) (b) 

(vf) 0.410 0.423 0.408 0.405 

X 0.405 0.376 0.725 0.763 

TABLE 1. Mode shape statistics, RR and PP plates. 
(a) first 120 modes and (b) 400Hz band, 

centre frequency 1kHz 

n=l 

Rewriting <7> in terms of the interactions between neighbouring modes gives 

(^>=Er,^W-Sr, (19) 
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If only those modes lying in fl are included in the sums and if f], is constant for all 
such modes then 

A-IvM(^)H^       ;   vm(M) = 
',„ j equip 

XfjJ+mVjJ+m  I . 
(20) 

where vm represents the average interaction of a mode with its m'th neighbour. For 
finite Af, and especially if M ~ 1, these expressions depend on the detailed statistics of 
yfjj+m(a) and the specific natural frequency separations that determine §j+m. Neglecting 
non-resonant modes (i.e., modes outside fl) can lead to noticeable errors if M is large. 

Because of the clear band-pass nature of |;i/+m, the sum over m can be truncated to 
exclude modes which do not overlap. Indeed, as an approximation one can regard 
^•i/+m as a band pass filter of width itA, and truncate the sums at ±vMI2 so that only 
those modes whose natural frequencies lie within each others noise bandwidths TE4/2 
remain. The coupling power is approximately then 

P. -{^-'tellH-rafe 
'equip W4 

(21) 

These equations indicate how the response varies with modal overlap and irregularity: 
for very low M, the response is determined by global mode localisation (i.e., A); for 
moderate M localisation and cross-modal orthogonality within a subsystem (i.e., v„) 
determine the response; for high 
M cross-modal terms dominate,       «c 
the  response  tending  to  zero. 
There is a clear tendency for 
regular systems to have small vM 

for small m. In this case the low 
modal overlap response which is 
determined   by   A   persists   to y£]J; 
relatively    higher    levels    of       " 
damping    than     in    irregular       « 
systems. 

Numerical examples. Figure 6 
shows yrjj+Ja) for two-plate RR 
and PP systems. For RR plates 
few mode pairs interact strongly, 
with many Vh+«(8) ^ini 
negligible.    This is particularly 

IJ+M />(Hz) 

Figure 6. Crou-modal interaction: ^„w as a function of 
natural frequency teparatkm, frequency band 800-1200 Hz: 

(a) RR and (b) PP plate systems. 
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true for low m. This is because 
in this regular case the global 
modes form clear groups, each 
with an integral number of half- 
wavelengths across the plate 
width. Modes within each group 
are generally relatively well 
spaced (i.e., neighbouring modes 
have different numbers of half 
wavelengths across the plate) and 
modes from different groups are 
orthogonal. Irregular plates do 
not have this distinct modal 
structure. Thus significant cross- 
modal interaction occurs at a 
higher level of damping for the 
rectangular, regular system. 

Figure 7 shows the frequency average coupling powers for the two systems, 
calculated from equation (20). There is close agreement with the finite element 
calculations (Figure 3) except when M is large. This is due to the contributions of 
non-resonant modes outside Q, which have been ignored in equation (20). 

Figure 7. Frequency average coupling power, equation (20), 

frequency band «00-1200 Hz: —RR and---PPpIateiy items. 

4. Irregularity and Coupling Power: Local Modes 

The previous section requires that a global modal analysis be performed. In order to 
reduce computational effort it becomes useful to describe the global modes in terms of 
local modal properties. In this section expressions for the response are given using 
component mode synthesis [7], from which the previous parameters can be derived. 

For time harmonic excitation of component mode s in subsystem a, the response of 
the r'th component mode and the consequent kinetic energy in subsystem b are 

qr=r'P(r./)P(M)a/(rt;   (rt> = ^-Re{q^M(fr)q(6)} (22) 

where Mw is the subsystem mass matrix, f, is the magnitude of the force applied to 
component mode s and P is a matrix of global mode shapes, whose elements are 
component mode responses. For uncorrelated broad band component mode excitation, 
<7t> can be found by summing over all modes (sea) and integrating over Q to give 

fc>= T   I M(M)fcP(tÄ)P0>)   l|f(j)|
2P(,.m)P(„p) Y^-Re{aM<})      (23) 

m./> \j.kei J\iea J\ *♦ /jl 
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In practice, uncorrelated component modal excitation approximates "rain-on-the-roof' 
excitation. In the notation of the previous section equation (23) can be written as 

{n)=nf vüW^r^ (24) 
m,p 

where the distribution factors are weighted by the mass matrix and excitation 
distribution respectively. Similar expressions can be found for the potential energy. 

5. Concluding Remarks 

This paper discussed some aspects of irregularity, damping and coupling strength with 
particular reference to the SEA of a system comprising two subsystems. In summary, 
the coupling is weak (in a wave sense) if wave coherence effects are negligible, this 
being the case if max(^ < 1. In this case P,ea is an accurate estimate of the frequency 
and ensemble average coupling power Pab. When the coupling is strong, the response 
depends on the detailed, rather than the gross, subsystem properties. 

In the strong coupling regime, a wave analysis can be used to find the response by 
including the effects of reflections from distant parts of the system. Alternatively, 
global mode properties can be used to relate the system response to the normal SEA 
estimate. When the damping (i.e., the modal overlap) is very small, global mode 
localisation determines the response in a frequency band through the parameter A. As 
the modal overlap increases, cross-modal interaction effects become more important. 
These manifest themselves through terms yfj£aJ,) which quantify the orthogonality of 
the (j,k)'Üi modal pair within subsystem a or b. To calculate the response a global 
modal analysis is required. While an individual mode is sensitive to uncertainties in 
system properties, averages over a number of modes are relatively insensitive. 
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1. Introduction 

One of the issues in the development of the SEA theory has been the validity of the 
method for the case of strongly coupled subsystems. In the earliest paper presenting the 
SEA formulation, Lyon and Maidanik [1] used a light coupling assumption to derive the 
fundamental power flow equations for two coupled resonators. In a later paper Scharton 
and Lyon [2] removed the light coupling assumption by redefining the subsystem 
"blocked" energies. The validity of applying SEA to strongly coupled subsystems has 
been questioned by a number of people [3,4]. 

In this paper the SEA coupling formulation is developed to include arbitrarily strong 
coupling and validations are included using numerical and experimental results. It is 
shown that the limiting case for the SEA validity is not strong coupling but low modal 
overlap. In some cases strong coupling increases the system modal overlap and actually 
improves the predictive accuracy of the SEA model. However, strong coupling does 
make the inverse problem of back-calculating coupling factors from measured results 
more unstable. 

2. Coupled Subsystems 

The SEA method is based on a statistical 
analysis of the power flow between coupled 
modes in a system. A simple case is depicted in 
Fig. 1, where a vibrating system is considered 
to be the connection of two distinct subsystems, 
attached  at a junction.  The modes  of the   Figure J. Vibrating System Consisting 
complete system can be considered to be the of Two Coupled Subsystems 
sum   of the   coupled  modes   of the   two 
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subsystems. Mathematically this is described by a pair of differential equations for the 
response « with excitation p of the form 

mx 
d2U\        du\ vuy du2 

dtl 

m2 
d1 

at 

du2 

at' 

dt 
"j- + r2

::^- + A2u2=P2+ti2l      2 

dt 

+ r21~ät +KnUl 

(1) 

where m is the mass, r is the dissipation, and A is the spatial derivative operator. The 
vibration response of either subsystem is driven in part by the motion of the other 
subsystem at the junction through inertial (//), gyroscopic (y), and elastic (x) operators. 

For linear and passive subsystems the uncoupled natural modes are found by solving 
two individual eigenvalue problems with the junction motion restrained (blocked) 

Wi-^-+r,^r+AlMi =A 

dr 

(2) 

For subsystems with proportionate damping (or an approximation for light damping), 
two sets of undamped and orthogonal natural modes, <pXa and<p2c, are found with 
associated natural frequencies, a>a and ma. 

The responses of the "unblocked" system are then expanded in terms of the blocked 
mode shapes having modal amplitudes U and modal excitations P, yielding a set of 
coupled equations 

M, 

M2 

tz dt 

d2Va dVa 2rr 

dhi, 
d 
a 

a 
AW 

d2U„ dU„ 
 ö    *■ Yaa    ,. 
dt2 dt 

Ho* 
d2U, 

dt' 
"Yaa' 

dU„ 
dt 

+ KaaVa 

+ KoaUa 

(3) 

For each a and a these equations are identical to those of the general pair of 
coupled resonators shown in Fig. 2. Scharton and Lyon [2] have shown that the 
frequency averaged power flow Un between the coupled resonators is given by 

Tln = Bn(E1-E2) (4) 
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Figure 2. Coupled Resonators 

where the energies are Ex ={MX + Mc/4)(dUjdtf, E2 = (M2 + Mj^dUj/dt) . 

Bn is a complicated function of the system parameters, but not of the energy levels. 

This result is valid for arbitrarily large coupling parameters Kc, Gc, and Mc. The 
subsystem energies are defined in a way which includes some of the energy of the 
coupling elements. 

Fahy and Yao [5] have shown that this result does not hold for dissipative coupling 
elements. However, for the most common cases where the dissipative coupling forces are 
small compared to the other coupling forces, Eq. (4) is a good approximation. 

Applying Eq. (4) to the system in Fig. 1, the average net power flow is found by 
averaging the value of Bl2 over a frequency band Ae> containing JV, and N2 modes 
in subsystems 1 and 2, respectively. This gives 

where 

and 

(B!2) = ^(/<V +(y2 +2fiK) + K2la>2) 

(5) 

n = (MC/4)/)/(M, + MJA\M2 + MJ4) 

r = GCJ^(MX + MCH\M2 + MJ4) 

K = KC/^(M1 + MC/4]{M2 + MC/A) 

It is interesting to note that in this form the frequency averaged coupling parameter is 
independent of the damping in the system. 
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An alternate form for Eq. (5) is obtained by defining the coupling loss factors 

712 ={Bn)N2lC0 a«1«1 %l = N\ 1\llN2 ■ T*"50 

(n12)=o> (712^1 -721^2) (6> 

3. Power Flow through Edge Coupling 

The SEA coupling parameters in Eq. (6) for connected subsystems can be derived from 
both a wave formulation and a modal formulation. A convenient model to validate the 
power flow derivations for a subsystem connected at an edge point is shown in Fig. 3. In 
this case the power flow from the longitudinal motion of a bar into an ideal viscous 
dashpot R is evaluated. This simulates the net power flow out of a subsystem at a 
junction but does not include the energy returned by the reverberation of the receiving 
subsystem. 

P r
V R 

Figure 3. 1 -D Bar with Edge Power Flow 

In the wave formulation a wave traveling in the +x direction with velocity amplitude 
Vinc = V+ expO'Jfcx - imt) is considered to be incident on the dashpot termination of the 

bar (x = L). A wave VKf = V_ exp(-ikx - ito t) will be reflected from the end, and some 

power, nabs, will be absorbed by the dashpot. With the boundary condition, 
icoRV = ESdV{dx at x = L, it is convenient to define a termination absorption 

coefficient as 

„_*!*■_,    Kl"       *{*/PSCL) (?) 

ninc      \v+\2   (i+R/PscL)2 

E is the elastic modulus, p is the density and S is the cross-sectional area of the bar with 

ci = yJEIp and k = a>lc^. 
The wave solution assumes that the incident and reflected waves are incoherent, so 

the total mean-square velocity is, (v2) = (v?c) + (v*f) = (2-a)(v*c). The absorbed 

power can be related to the SEA expression for dissipated power to find an expression 
for the effective loss factor 7 
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«ninc   _cL    a (8) 

<oM(v2)    <oL2-a 

In the modal formulation the wave equation, p dV2\dt2 = E dV2 jdx , for the 

longitudinal velocity V is solved with the boundary condition toP = ES dV/dx at the 
excitation point (x = 0), and toJt V = E S dVjdx at the dashpot (x -1). This gives the 
bar response function 

V        1     cosk(L-x)-i(R/pScL)smk(L-x) 

P~ pScL (R/pScL)coskL-isinkL 
(9) 

The bar energy is proportional to the mean square velocity. Averaging V2 over the 
length of the bar and over frequency (above the first resonance) for a constant amplitude 
excitation gives 

(K2)=     1      l + (R/pScLf 

(pi)' pScL    2(R/pScL) 

This result can be related to the SEA power flow relation 

Hin =n0ut 

(P2) 

pScL \    ' 

where TJ is the loss factor and M = pS L. Solving for the loss factor gives 

_ cL      2(R/pScL) 
fflI  \ + {R/pScL)2 

(10) 

(ID 

(12) 

This expression for the loss factor can be related to the boundary absorption 
coefficient a using Eq. (7) 

'    a>L 2-a 

which is identical to the result in Eq. (8) obtained from the wave formulation. 
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For the case of edge connected subsystems, such as shown in Fig. 4, the absorption 
coefficient used above is replaced with a transmission coefficient, defined in the wave 
formulation as 

n 
'12 = 

tra 
n;, 

4J?1/g2 

|Z,+Z2|
2 

(14) 

where R is the real part of the 
subsystem connection impedance 
Z. With no significant power 
dissipation at the connection, 
nref=0-'12hine- 

in the wave formulation the 
power   transmitted   into    sub- F/gure 4. Edge Connected Subsystems 
system   2   is   assumed  to   be 
incoherent with the power transmitted back into subsystem 1. Then, 

ntra=nl->2=ö"7l2£l 

Also, the incident and reflected waves are assumed to be incoherent, so 

E\ = MX ((*&) + (F*r)) = 2 Mx G, (n^ + nref) 

where Gt is the subsystem conductance (real part of mobility). 
Combining Eqs. (14-16) gives an expression relating TJ to r 

(15) 

(16) 

1 
7l2 

'12 
2fi)A/1G1 2-r12 

(17) 

In the modal formulation subsystem 1 is considered to be driven with excitation P, 
at point a. The SEA power balance relation for subsystem 1 is 

nl,in=nl,diss+nl2 

(p^)Gia=o>rjiEi+(v})R2j 
(18) 

where Gxa is the input conductance of the excitation, % is the damping loss factor of 
subsystem 1, Vj is the junction velocity, and R2j is the input resistance of subsystem 2 at 
the junction. The SEA power balance relation for subsystem 2 is 

n12=n 2,diss 

(v})R2j=wr]2E2 

(19) 
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Combining these two power balance equations gives 

M-flL  92 £2 (20) 

Next, a reciprocal condition is considered in which the connection junction is driven 
with Pj> resulting in a junction velocity Vj. = Pj'l (Zy- + Z2j). The SEA power balance 

relation for subsystem 1 in this case is 

n !,«,•= n1)diSS- 

These two conditions are related by the reciprocity relation which, when averaged over 

point a, is 

(ill M (22) 

Combining Eqs. (20-22) gives 

*»rnMl—r-\—ih'"v"VT" (23) 4Äi^_ 

v+Mfttä)! \zlj+z2j\ 

In principle Eq. (23) could be averaged over frequency for a particular modal 
solution for the two subsystems in a manner similar to that done for the response of the 
1-D bar in Eq. (9). However, an approximate general formulation can be found by noting 
that G, peaks at the resonances of the system (for light damping), at which frequencies 
the reverberant energy ratio is 

Ei    m + Tk\ 
£2 »712 

The frequency averaged transmission coefficient is then given by 

(24) 

Aco^MM) (25) 

f}2      912 
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Solving for T}n, using (GX) = (nl?)(n(w)xl Mx) and j]2X = 712("(<») 1 /"(ö>)2)> where 

n(a>) is the subsystem modal density, and defining the modal overlap factors, 

{nj2)ß = (ff/2) w rjr{a)), gives 

1 
m2~ 7twn(a)x       i     \(   \ 1 

*MT> 
^  (26) 

■A    *A) 

When the modal overlap increases to unity (which is the upper limit of this 
approximation), Eq. (26) is identical to Eq. (17). This indicates that the wave solution 
assumption of incoherence is valid in finite systems only for high modal overlap. The 
form of Eq. (26) is not convenient to use at low modal overlap because of the subtraction 
in the denominator. The average transmission coefficient is also a function of the modal 
overlap. 

A better correction for low modal overlap can be obtained using the example shown 
in Fig. 5 of two beams connected at a right angle. The frequency dependent transmission 
coefficient for fiexural motion is plotted in Fig. 5a using an exact impedance 
formulation. Also plotted are the calculated frequency averaged values and the infinite 
system value tn>aD (used in the wave solution).  The normalized coupling loss factor 

values are plotted in Fig. 5b. 
Also plotted in Fig. 5b is an curve-fit approximation for the coupling loss factor 

based on two limiting values. First, for high modal overlap the coupling loss factor 
converges to the infinite system value. Second, for low modal overlap the coupling loss 

factor is reduced by the factor \2.n{ß\ + &)) • A convenient curve-fit is 

N8VV* 
1 r12,co 

mi ~ ita>n{a))x 2-r12)0 
1 + 

v U^IA+AJJ, 
(27) 

This result is valid for point-coupled subsystems. For line arid area connections an 
additional term is needed to take into account the effects of wavelength matching along 
the connection [6]. 

For systems with more than two subsystems the modal overlap includes the coupling 
as well as the damping loss factor. This is seen in the example shown in Fig. 6 where the 
two beams used previously have an additional beam attached. The modal response is 
more dense, and modal overlap is achieved at lower frequencies. 

While edge connected subsystems are considered to be strongly coupled when the 
value of the transmission coefficient approaches unity, the next two sections consider 
even more strongly coupled subsystems. 
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Figure 5. Transmission Coefficient and Coupling Loss Factor for Edge Connected Beams; 
 Analytical Solution, • 400 Hz Average, Using Eq. (27), Infinite System Values 
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Figure 6. Transmission Coefficient and Coupling Loss Factor for Edge Connected Beams; 
 Analytical Solution, ♦ 400 Hz Average,  Using Eq. (27), Infinite System Values 
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4. Beam-Plate System 

One example of strongly coupled subsystems is the 
case of a beam attached to a plate along its length 
as illustrated in Fig. 7. In some cases it is desirable 
to define separate subsystems for the plate and the 
beam modes. The question is how to define the 
subsystems in keeping with the "blocked" 
subsystem definitions used above. This can be 
answered by evaluating the impedance of the beam-plate junction. 

The drive-point impedance of the beam-plate junction can be evaluated using the 
wavenumber integral formulation 

Figure 7. Beam on a Plate 

-L.-L f- e~ik'x dkx 

r-bp 2*JcoZ'b(kx) + Z'(kx) 
(28) 

where the line impedances as a function of the wavenumber kx along the length of the 
beam are given by 

Zb=i-Bb(kx-kt) 
eo 

z'p=i*B'pkl •ykp — kx     ^kp + kx y 

-1 (29) 

Bb is the bending rigidity and kb is the free bending wavenumber of the beam. Ep is 

the bending rigidity per unit length and kp is the free bending wavenumber of the plate. 

A numerical evaluation of this integral (with care in dealing with the branch cut in 
the complex square root function) for a particular case is shown in Fig. 8. This 
impedance should be the sum of the two SEA subsystem impedances. At low frequencies 
the junction impedance converges to the free plate impedance. However, at high 
frequencies the junction impedance does not converge to the free beam impedance. 
Rather, it converges to the impedance of an equivalent beam constrained by the elasticity 
of the plate. This equivalent beam can be approximated by including a plate width equal 
to l/kb , as illustrated in Fig. 8. A similar result is obtained for the torsion of the beam. 

As an illustration of the use of these subsystems in an SEA model, a ribbed plate 
tested by Heckl [7] (see Fig. 9) is analyzed. Three sections of the plate are used, each 
with bending and inplane modes modeled separately. An equivalent beam is used with 
bending and torsional modes modeled separately. Fig. 9 shows a good comparison 
between the SEA model and the measurements. 
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Figure 8. Impedances of Beam-Plate System; 
— Junction Numerical Solution, 
 Flat Plate,  Equivalent Beam 
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Figure 9. Vibration Ratio across a Beam on a Plate; 
♦ Measurements, — SEA Model 

10000 

5. Fluid-loaded Plate 

Another example of strongly coupled subsystems is the case of a plate in contact with a 
fluid of significant impedance. The impedance of a line force driving on the plate is 

given by 

J_. -L f _ 
7> O «r    J     7« 

-lkyydL 

Tfp    2*±a>Z"p(ky) + Z«f(.ky) 

where Z*'p and Z"y are the area impedances of the plate and fluid, respectively [8]. 

Fig. 10 shows a numerical evaluation of the impedance for steel in water compared to the 
two asymptotes of a free plate and one with the fluid inertia loading. Using this result in 
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an SEA model for the transmission across a simple support on a fluid-loaded plate, the 
results shown in Fig. 11 are obtained. 

|Zf/Zp| ;: 

Figure 10. Impedances of Fluid-loaded Plate; 
 Numerical Solution, Free Plate,  Fluid-loading 

tau 

0.001 

Figure 11. Transmission Coefficient of Fluid-loaded Plate across 

a Simple Support; — Numerical Solution, SEA Model 
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THE ENERGY FLOW EQUATION OF CONTINUUM 
DYNAMICS 

J.T.XING1'2* 
Solid Mechanics Centre, Beijing University of Aeronautics and 
Astronautics, Beijing 100083, People's Republic of China1 
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Department of Ship Science, University of Southampton, 
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Abstract. A mathematical model is developed to describe the energy flow equation asso- 
ciated with the dynamics of a viscoelastic continuum excited externally and subject to 
boundary conditions. The model is applied to a selection of simple examples to illustrate 
the concepts of an energy flow density vector, energy flow line, energy potential and an 
energy equipotential surface. On this basis, a brief comparison between mechanical and 
thermal energy flows is conducted. 

Key words: Energy Flow Equation, Energy Flow Density Vector, Viscoelastic Continuum 

1. Introduction 

Based on the fundamental equations and principles of continuum mechan- 
ics, a general theoretical approach is developed to assess directly the energy 
flow or power flow in a general continuum subject to external excitation and 
prescribed boundary conditions. To achieve this aim, the proposed mathe- 
matical model examines the energy transmitted from point to point within 
the continuum through an energy flow density vector being functionally 
dependent on a stress tensor and a velocity vector. This allows determi- 
nation of the rate of energy flow at each point in a denned direction, the 
construction of energy flow equations and their time averaged forms as well 
as defining the energy flow line, the energy flow potential and equipotential 
surface within the continuum. 

The proposed mathematical model generalises the more traditional 
approaches adopted in statistical energy analyses or power flow analyses as 
described by Lyon and Maidanik (1962), Scharton and Lyon (1968), Lyon 
(1975), Goyder and White (1980a,b,c),Fahy (1994), Keane and Price (1997) 
and many others in their investigations of high frequency excited dynamical 

JTX expresses his thanks to NSFC for supporting the related research in China. 
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Figure 1.  Energy transmission from one part to another in the continuum 

systems. Normally, for a specific dynamical system, e.g. two oscillators or 
rods connected through a spring-dashpot coupling, the relevant equations 
of motion are derived and through their analysis and solution the energy 
flow or power flow passing through the system caused by an external exci- 
tation is evaluated. In this paper, following the original discussion on the 
flux of energy in vibratory motion described by Love (1927), we investigate 
and develop energy flow concepts from a more generic viewpoint, presenting 
energy flow equations derived from the equations of continuum mechanics. 

This is illustrated by a brief description of the proposed mathematical 
model developed from the linear field equations associated with the dynam- 
ics of a viscoelastic continuum. By this means, the energy flow equations are 
derived for dynamically excited systems, such as a rod in tension or com- 
pression, a rod in torsion, a Timoshenko beam, a shear plate and a circular 
plate under a concentrated load. Furthermore, on this basis, the hypoth- 
esis, proposed by Nefske and Sung (1987) and investigated by Wohlever 
and Bernhard (1992) and Carcaterra and Sestieri (1995), that the flow of 
mechanical energy through a structure may be modelled in a manner similar 
to the flow of thermal energy in a heat conduction problem is investigated. 

2. Viscoelastic Continuum and Energy Flow Mathematical Model 

It is assumed that the continuum and structures under investigation in this 
paper are constructed of materials described by a linear Voigt viscoelastic 
model (see, for example, Fung 1977). Let us examine the motion of a con- 
tinuum system B from time t0 to tu (tx > t0) as schematically illustrated in 

pl2.tex;  13/06/1997;  10:49; no v.; p. 
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figure 1. In the frame of the Lagrangian coordinate ar,-, (i=l,2,3), the con- 
tinuum occupies the domain tt with surface S which has the unit vector uj 
defined along the outer normal. In this study it is assumed that the vari- 
ables ui and Vi represent displacement and velocity, respectively; oy a stress 
tensor ; e„ a strain tensor; Cijki an elastic constant tensor; dijk, a viscous 
constant tensor; Su displacement boundary with a prescribed displacement 
üi\ ST traction boundary with a prescribed traction T-; /, a body force per 
unit volume acting in the continuum a.nd p the density of the continuum. 
Under these circumstance the linear field equations describing the dynamics 
of the continuum system are expressed as: 

Dynamic equation: (Tijj + f = pvij, (1) 

Constitutive equation: oy = Cy^cti + dy-j^ki,«' (2) 

Displacement-strain relation: ey = (ujj + ujti)/2, (3) 

Displacement-velocity relation: vt = «,-,<, (4) 

Boundary conditions: u{ = %i    on Su, (A) 

ffijUj = fi    on ST, (6) 

where, for example, vitt = dvt/dt, o-ijtj = Uij/dxj, etc. 

Energy Flow Density Vector 
The energy transmission from one part to another in a continuum excited 
by external forces can be investigated by analysing the energy flow across 
the closed surface s within the continuum B illustrated in figure 1. Let 
As denote an elemental surface on a and v{ an unit normal to A* with 
its positive direction pointing outward from the (negative) interior to the 
(positive) exterior. The interactions between material lying on either side of 
this surface cause internal actions defined by the traction or stress vector 

Ti representing the force per unit area acting on the surface s. Through 

the rate of work done by this traction f,-, the rate of energy flow along the 
direction ^ is given by 

<l ' = -* Ti ■ (7) 

A positive value of qv represents the transmission of energy per unit time 
through the unit area As from the material within s to the outside. 

It follows from Cauchy's formula (see, for example, Green and Zerna 
1954), the traction 

Ti=Oi}Vj: W 

and hence the rate of energy flow 

q" = -VidjVj =qjVj. (9) 

pl2.tex; 13/06/1997; 10:49; no v.; p. 
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Here, the energy flow density vector 

qj = -viOij = -(TjiVi (10) 

is defined by the dot product of the velocity vt and stress tensor ^ and is 
a vector field function dependent on the coordinate xt and the time t. In a 
continuum mechanics approach this energy flow density vector q, specifies 
the energy transmission from one part to another in the dynamical system 
and allows the determination of the rate of energy flow at each point in or 
on the continuum in any direction with unit normal v{ through application 
of equation (9). 

Energy Floiu Line 
An energy flow line is defined as a line in the direction of the energy flow in 
the continuum, and satisfies the differential equations 

dx^/qi = dx2/q2 = dx3/q3. (H) 

These energy flow lines are the vector lines of the vector field of the energy 
flow density qt and give a geometrical description of the vector field. 

Energy Flow Potential 
If the vector field of energy flow density q{ is assumed irrotational, there 
exists a single-valued function </?, called an energy flow potential satisfying 
the relation 

qt = -dfjdxi = — v?,,-. (12) 

The necessary and sufficient conditions for the existence of the energy flow 
potential is the irrotational condition of the vector field q{, i.e. 

Cijkqkj = (ijk{Vr^rk),j - 0, (13) 

where eijk is the permutation symbol. Based on Stokes theorem (see, for 
example, Fung 1977), the energy flow line in a single connected domain of 
continuum will not be a closed line, if there exists an energy flow potential. 

Equation (12) shows that when an energy flow potential exists the energy 
flow lines are everywhere perpendicular to a system of surfaces, viz. the 
equipotential surfaces tp = constant. Again, if from the point (xl,x2,x3) a 
linear element dl extends in the direction (**, ^, **), the rate of energy 
flow resolved in this direction is 

tt = -<ptidxildl=-d<pldl. (14) 

The rate of energy flow in any direction is therefore equal to the rate of 
decrease of <p in that direction. 

pl2.tex; 13/06/1997; 10:49; no v.; p. 
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Taking dl in the direction of the normal to the surface <p = constant, we 
see that if a series of such surfaces are drawn corresponding to equidistant 
values of </>, the rate of energy flow at any point will be inversely proportional 
to the distance between two consecutive surfaces in the neighbourhood of the 
point. Hence, if any equipotential surface intersects itself, the rate of energy 
flow is zero at the intersection. The intersection of two distinct equipotential 
surfaces would imply an infinite rate of energy flow. 

Input, Absorption and Transmission of Energy 
At every point in the continuum there occurs a dynamical physical process 
involving an input, absorption and transmission of energy. Their rates are 
defined as follows. 

Rate of energy input represents the rate at which energy enters the con- 
tinuum and this is defined by the power of the applied external body force 
/,: at the input point in the continuum, i.e. 

*' = *& = $,. (15) 

Rate of energy absorption describes the ability of the continuum to absorb 
energy and equals the sum of the rate of change of mechanical energy E and 
the rate of energy dissipation D, i.e. 

xA = E + D. (16) 

Here the densities of mechanical energy E, kinematic energy K, strain energy 
U and energy dissipation D are defined as 

E = K + U,   U = Gjkietjeu/2,   K = pv2/2,   D = f diik,ek,iteiiitdt. (17) 

Rate of energy transmission is the difference between the rates of energy 
input and absorption, i.e. 

7r = 7r'- T\ (18) 

This describes the ability of the continuum to transmit energy from a point. 

Energy Flow Equation 
From the governing equations of the continuum expressed in equations (1)- 
(6), Xing and Price (1997) show that the equation of energy flow balance of 
the continuum takes the form 

qjtj = qs - E - D = 7T7 - itA = 7T,    q" = qu   on 5U,    q" = qT   on ST, (19) 

where the boundary energy flows qu on the displacement boundary Su and 
qT on the traction boundary ST are respectively given by 

qu = -ViCijuj^       qT - -Vifi. (20) 
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This equation defined at any point in the continuum states that the diver- 
gence of the energy flow density vector (qjrj) equals the rate of energy trans- 
mission 7T, being the difference between the rates of energy input (V) and 
absorption (TT

A
). 

The application of the time average operation to the local equation of 
energy flow balance expressed in equation (19) gives the following time aver- 
aged equation of energy flow balance 

(lj)j = (?/) - <£> " <^> = <*), it") = (?«>on Su, (<?") = <«Zr)on Sr. (21) 

For the case of a harmonic motion or a stationary random process (see, 
for example, Newland 1975; Price and Bishop 1974) in the absence of any 
body forces it follows that the results of the time averaged equation of energy 
flow balance in equation (21) reduces to the simpler form 

(Qih = -0h   <<7"> = <?«> on 5«'   (?"> = («r> on ST. (22) 

If the energy flow potential expressed in equation (12) exists, this equation 

can be further expressed as 

(tfjj = {D),   {<p)ji>j = -{?„) on Su,   (<p)jVj = -(qT) on ST.       (23) 

These two equations state that for the case of a harmonic motion or 
a stationaiy random process in the absence of any body forces, the time 
average of the energy flow distribution in the continuum is only dependent 
on the distribution of the material damping. Furthermore, if there exists no 
damping, the time average of the possible energy flow potential must satisfy 
the Laplace equation. 

To illustrate these concepts, this mathematical model is applied to a 
selection of simple examples as demonstrated in the following sections. 

3. Rod in Tension or Compression 

In this example, it is assumed that the longitudinal axis of the rod (0 < x < 
Xi) coincides with the x-axis of a rectangular Cartesian axis system. The 
governing equations describing the linear dynamics of a Voigt viscoelastic 
rod with unit sectional area are as follows. 

Dynamic equation:     Tx + f = pvtt, (24) 

Constitutive equation:     T = Ce + de>t, (25) 

Displacement-strain relation:     e = u<T, (26) 

Displacement-velocity relation:     v - u>t, (27) 

Boundary conditions:     T = T,     x = 0, (28) 
u-ü,     x = xi. (29) 
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The energy flow density vector q, the energy flow potential ^ and the 
energy flow equation are respectively written as 

q = -vT,        q = -<f,x, (30) 

qT = qf- E-D,    q = q0  on  a; = 0,    q = q~i   on  x = xu (31) 

where 

qf = vf,      qQ=-v0T,     qi - -T\üit, 

K = pv2/2,     U=Ce2/2,     D= I de,te,tdt. 

For stationary random processes, it follows from equation (31) that the time 
averaged equations take the form 

(«),* = («/>- 0),    (?> = (?o>  on  a: = 0,    (q) = (<?!>  on  a: = *i-   (32) 

4. Rod in Torsion 

Let us assume that the longitudinal axis of the rod coincides with the z-axis 
of a cylindrical coordinate system; M, ro and 9 represent the internal torque, 
the distributed torque and the twist of the rod, respectively. The governing 
equations of the rod in torsion are represented as 

Dynamic equation:     M<g + rh = pJojt, (33) 

Constitutive equation:     M = GJe + ete«, (34) 

Displacement-strain relation:     e = 9<z, (35) 

Displacement-velocity relation:     u = 0 (, (36) 

Boundary conditions:    M = M,     z = 0, (37) 

0 = 6,     z = zx. (38) 

The energy flow density vector g, the energy flow potential ip and the 
energy flow equation are respectively expressed in the following way: 

q = -LJM,        q = -9,*, (39) 

qz=q}-E-D,      q = q0,     z = 0,      q=qu     z = *u <40) 

where 

qf = urn,     q0=-uJ0M,     qx = -A/i0<, 

K = pJuJ2/2,     U=GJe2/2,     D= f deiteitdt. 
•/to 
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5. Timoshenko Beam 

The governing equations describing the linear dynamics of a Timoshenko 
beam in bending are as follows (Timoshenko et al 1974): 

Dynamic equations: Q,x + f = pAvit, M„r - Q = pluitl  (41) 

Constitutive equations: M = CJK + dMKt, (42) 

Q = GA-y + dQi,t, (43) 

Geometrical relations: K = ipiX, 7 = 1/' + w,*i (44) 

Deflection-velocity relations: v - w:t, w = 4>,t, (45) 

Boundary conditions: M = M, Q = Q,     x = 0, (46) 

■w = w,   41 - i\     x = Xi. (47) 

The energy flow density vector q and the energy flow potential <p are 

respectively defined as 

q = -(vQ + uM),        q = -f,x- 48] 

The energy flow equations and their time averaged forms for stationary 
random processes are the same as those derived in equations (31) and (32). 
respectively. However, in this case, the relevant quantities are defined as 

follows: 

9n = -(voQ + WoM),   ft = -(Qiwt + Mj\t),   K = p(Av2 + Iu>2)/2, 

qf - Vf,   U = (CJK
2
 + GAf2)/2,   D= f {dMK,t*t + dQi^,t)dt. 

Jto 

6. Shear Plate 

In the following analysis, the subscripts a and ß take values 1 or 2 and the 
repeated subscript summation convention applies. For example, the plate 
stress-resultants described by the transverse shear force Qa and the moment 
Maß per unit length, the unit outward normal vector va and the unit tan- 
gent vector ra of the midplane of the plate have components Qu Q2, Mn, 
M12, etc. This notation allows the governing equations describing the lin- 
ear dynamics of a shear plate to be expressed in the forms (Reismann and 

Pawlik 1980): 

Dynamic equations: Qa,a + f = Pnv,t, (49) 

Maß,ß -Qa = pIua.U (5°) 
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Constitutive equations: Maß = D[(l - n)naß + ^Saß] 

+dM[(l - ß)na0it + luijaß], (51) 

Qa = Ghla + dqicu (52) 

Geometrical relations: Kaß = (/ti'«,/? + Vv.<*)/2> (53) 

7„ = V'„ + W,Q,      K = i,«, (54) 

Deflection-velocity relations: v = w,(,    w0 = i])a,u (°5) 

Boundary conditions: w - w,    </>" = y"   on 5d, (56) 

M" = McßUaVß = M"    on Sf, (57) 

Q" + M,7 = Q" + M7    on 5;, (58) 

where 
M"T = eZaßvaM

v
ß = e3aßuaMßlvy. (59) 

The energy flow density vector qa is defined as 

q« = -(vQa + UßMßa). (6°) 

If 92il = q1<2, there exists an energy potential y satisfying 

qa - -<P,c 

The energy flow equation is 

qa,a = 4f-E-D,    q" = q"d   on Sd,    q" = q)   on 5,, 

where 

9/ = t'/,    $ = -(*&..Q" + ^").    ?/ = -^"^ + ^"^ 
A' = p(hv7 + IuauJa)/2,   U = [D(l - n)naßKaß + ßKK + Ghwa]/2, 

D = / {dMKaß,tKaß,i + dQ^a,tl/a,tdt- 

7. Circular Plate under Concentrated Load 

Let us examine a clamped, circular plate of radius a, acted upon by a trans- 
verse concentrated load / = F(t) at the centre of the plate. In this example, 
it is convenient to use a plane polar coordinate system (r, 0). Because of axi- 
al symmetry, the rotation V» = 0 and the rotation 4\ and the deflection w 
of the plate are functions dependent, only on r and t. According to the equa- 
tions given in section 6, the energy flow equations described in equations 

(62)reduce to 

(rqr),r/r = witF{t)6(r)-E-D for 0 < r < a,     gP(o,i) = 0,       (63) 

(61) 

(62) 
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assuming qr{0,t) is bounded. The energy flow density vector qr lies along the 
radial direction and the energy flow lines are a set of lines radiating from 
the centre of the plate. Furthermore, from equation (61), the energy flow 
potential <j> can be obtained and the resultant equipotential surfaces are a 
set of increasing radial circles around the centre of the plate. 

An integration of equation (63) over the circular area of radius r, (> < a), 
gives 

2xrqr = w ,(0, t)F(t) - f 2itrEdr - / 2nrDdr. (64) 
Jo Jo 

For a stationary random process or a sinusoidal excitation, the time average 
of this equation takes the form 

27rr(9r) = (wt(0,t)F(t)) - f 2nr{D)dr. (65) 
Jo 

Letting the integration radius r = a and using the boundary condition given 
in equation (63) produces the result 

lv)t(p,t)F(t))= [a2*r(D)dr. (66) 
Jo 

This demonstrates that the average energy input of the load is totally 
absorbed by the damping of the material of the plate. If the latter is neglect- 
ed then the average energy input of the load must be zero to keep the motion 
of the plate bounded. 

8. Discussion: Energy Flow Potential and Thermal Analogy 

In some analyses of power flow, it has been hypothesized that the the energy 
flux density may be represented by a gradient of total energy density (for 
example, Nefske and Sung, 1987). As previously discussed, the necessary and 
sufficient conditions for the existence of an energy flow potential expressed 
in equation (12) is that the energy flow density vector field is irrotational, 
i.e. equation (13) is valid. For the structural members described in sections 
3-5, this condition is valid and an energy potential exists. As an example, 
let us further investigate the rod in tension or compression as described in 
section 3. From equations (30)-(31) it follows that 

q =  [T(q, -E- D)dx + g0,    «i = / '(?/ ~ E - D)dx + g0,        (67) 
Jo Jo 

4>=- ['[ [\qf -E- D)d£ + q0]dx + #0,i), (68) 
Jo   Jo 
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where <f>(0,t) denotes the value of the energy flow potential <t> at the end 
x - 0 which is assumed zero if this end is chosen as the base point of the 
energy flow potential. Equation (68) shows that the energy flow potential 
depends on the rate of energy input qf, the rate of of change of mechanical 
energy E and the rate of energy dissipation D. Therefore, in a general case, 
it may be difficult to represent it only by the total mechanical energy density 

E. 
To examine the thermal energy analogy hypothesis, let us assume that the 

rod discussed in section 3 is now replaced by a semi-infinite nonviscous rod 
(i.e. D = 0) such that xx = oo with no waves reflected. It is thus of interest to 
examine how the energy of the wave produced by the force applied at x - 0 
transmits along the rod. The general solution of this problem is represented 

by 
u{x,t) = f(x-ct). (69) 

This corresponds to the following densities of strain and kinetic energy and 

energy flow density vector 

tf = |/'3,      K = ^-f\      q = Ccf'\ (70) 

respectively, where f'(() = df/d£. Using the relation c2 = C/p and equation 

(17), we obtain 

V = K = %,        q = cE. (71) 

From the energy flow equation (31), the energy transmission along the rod 
is given by the first order partial differential equation 

cE,x + E,t = 0, I72) 

subject to the boundary condition E{0,t) = q/c at x = 0. The behaviour of 
this equation is not similar to the one representing the flow of thermal energy 
in a heat conduction problem, (see, for example, Courant fe Hilbert 1962). 
If the rod is of finite length, reflected waves occur at n and this simple 
equation becomes invalid. Therefore, from this analysis, we conclude that, 
in general, there lacks a direct similarity between the flow of mechanical 
energy through a structural system and the flow of thermal energy in a heat 
conduction problem confirming the findings of Carcaterra & Sestieri (1995) 
and the development of any hypothesis or modelling based on such analogy 

is of limited value. 
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A NOTE ON CONSERVATIVE AND NON-CONSERVATIVE 
COUPLING 

C. R. FREDÖ 
Ingemansson Technology AB 
Box 276, S-401 24 Gothenburg, Sweden 

Introduction 

Statistical Energy Analysis (SEA) [1] is a useful tool for investigating transmission 
paths for sound and vibration. A well-known disadvantage of SEA is that it is difficult 
to treat systems in which high losses occurs between the subsystems. A solution to 
this dilemma would be to include the non-conservative coupling element as a subsystem 
and, by this way turn the system into a conservatively coupled case. However, it is well 
known that the conventional three-subsystem model [2] cannot be collapsed into a 
meaningful non-conservatively coupled two-subsystem model. The problem can 
therefore not always be avoided by introduction of an additional subsystem. Practical 
problems may as well arise for cases where it is problematic to excite the intermediate 
element. 

This fact highlights that the conventional three-subsystem model is a reduced model. 
It has been previously shown by several authors [3-6] that a conservatively coupled 
three-subsystem model requires introduction of so called indirect couplings to become 
complete. 

The indirect couplings account for the transfer of power across subsystem 2. This 
type of coupling is believed to account for the non-resonant transfer path between 
subsystems 1 and 3 and, in fact, has been included in SEA for some special cases. Most 
notable is the so called 'mass-law' another example is coupling via the stiffness of the 
intermediate element. 

The subsystem response in SEA is normally considered to be resonant. A non- 
resonant path across an intermediate subsystem does therefore not effect the resonant 
energy of the intermediate subsystem. One motivation to why indirect transmission is 
considered to be non-resonant is that the non-resonant part of the energy in a subsystem 
cannot store energy and, thus is inefficient at destroying power in this element. 
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However, the non-resonant behaviour of the subsystem can yield a mechanism that is 
effective at transferring power across the element. 

As mentioned above, the so-called 'mass-law' of a limp wall between two rooms is 
a well known example of non-resonant transmission. The vibrational level of the wall 
does not matter as long as it is not related to the indirect transmission, e.g. vibration 
introduced from structural coupling does not effect the sound transmission since a limp 
wall is unable to radiate this vibration into any of the connecting rooms. Another 
motivation is that the transmission across a limp wall is invariant to dissipation in the 
wall. The transmission mechanism must therefore be non-resonant 

It may at first seem strange to connect indirect couplings that are insensitive to the 
dissipation in the intermediate element with non-conservative coupling that consumes 
power in the element. However, an energy flow model that incorporates indirect and 
direct coupling can be shown to yield a complete solution for the conservatively coupled 
three-subsystem case. It should therefore be possible to obtain information about the 
non-conservatively coupled case simply by reducing the information that is used to yield 
the complete solution. The order of presentation is therefore to first examine the 
conservatively case and thereafter to continue with the non-conservatively coupled case. 

2.     Theory 

The investigated case consists of three rectangular plates coupled along simply 
supported joints, as depicted in Figure 1(a). The interaction between the plates is carried 
out by moments. Excitation is provided by forces of rain-on-the-roof character. The 
analysis is based on thin plate theory with homogeneous, isotropic plates of uniform 
thickness and applies for modal and viscous damping. Only viscous damping will be 
discussed as modal damping complicates the presentation. The model can be applied to 
plate edge boundary conditions that allow the eigenmodes to be divided in separate shape 
functions. Note that the plates incorporate bending (out-of-plane) motion only. 

The approach which is used in this study was originally developed for beams by 
Davies et al [7] and later extended to plates by Dimitriadis et al [8,6]. The derivation is 
lengthy and the idea is therefore to sketch only the basic steps of the analysis and their 
outcome. A more detailed examination is given in references [6,9] 

The power that is injected into the subsystems, the power that is transmitted across 
the junctions, the kinetic energy for the plates and the power that is dissipated in each 
subsystem can be written as 

(SPin,l\     T Vi       o        o    "I /5i' 

,S/V2  =      o      V2      o      {s2) = M/s2l. (1) ;i &VsJ     L   o       o      V3  J \S3\ 
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U31   U32   U33 . 

= [U] (4) 

for subsystems 1, 2 and 3, respectively. The direction of the arrow in the subscript of 
the energy flow 5/»/.>y indicates the direction of the energy flow that is considered to 
have positive sign. The rain-on-the-roof excitations are denoted as 5;. 

The content of equation (3) is similar to what has been obtained previously by other 
authors. Equation (3) is identical to the so called "energy influence coefficients" that 
were introduced by Guyader et al in reference [10]. Equation (3) is similar (and in some 
situations identical) to the "Greens function" that Langley used in reference [4]. 

The power balance can also be expressed as a function of the energy flow and the power 
that is dissipated in each subsystem, i.e. as 

\S**.i\ I Si  \ I Si  ' 

>.».* -[v]{ 52 =(M + M s* 
\SP, in, 3 I S3 \ S3 

(5) 

*v* 

Rll 
PI21 

R21 

lUll 
|P%1 

For excitation 

Sl R31 
"31 

Figure 1 a) The U-shaped plate assembly. The plates are considered to be rectangular, thin and 

simply supported in the analytical model, b) The conceptual energy flow balance for the case 

where rain-on-the-roof excitation acts in plate 1. 
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2.1.     CONSERVATIVE COUPLING:  UNCOUPLED SUBSYSTEM 
ENERGY 

The average energy of an uncoupled plate that is subjected to rain-on-the-roof excitation 
can be shown to be [6,7] 

(E„b = -^Ln£w)  ,and 0j = -^-  , (6a,b) 
^ lEjAj lEjAj 

where the energy per mode is signified by 0;- and the average density of uncoupled 
modes is denoted as n/a). Specific viscous damping is denoted as e, and plate area is 
denoted A,-. A feature which is oftentimes forgotten is that the excitation (Sj) is a part of 
the energy per uncoupled mode (it would otherwise be normalised with respect to the 
spectral density of the excitation). This fact implies that the average energy per 
uncoupled mode, by definition, must be zero for a receiving subsystem when excitation 
occurs only in the sending subsystem. 

This fact is, perhaps better understood if one states that a receiving subsystem 
cannot be uncoupled if it receives power from another subsystem that is connected to it. 
The receiving subsystem must in this situation, by definition, be of the coupled type. 

The dissipative powers fulfil 

t/n _ eiAi    Un - £iAi    ^ t/32 - E3A3     ^ ^.^ 
Un    E3A3    U21    EiAi Un   £iAi 

which happens to be the same as the ratio between the uncoupled average energies per 
mode. This fact can be used together with the knowledge that the energy flow out from 
subsystem 1 equals the power that is dissipated in subsystems 2 and 3 

PPii - U21 + t/31    , and that PP31 = I/31    . (6f,g) 

Similar findings apply for the other energy flow components. 

The energy flow can thus be re-expressed as a function of the average uncoupled, i.e. 
as 

SPU>2 = U2hi - Mu2 W3i(Si - Mis,) = fl)7ji2ni(0i-fc) + ß"?'i3m(0i-fc).    (7a) 
V E2A2     I V £3A3     / 

and 

5F3->2 = 1/23(53 - ^^SiVuJss - %±±Si) = (omMto-h) + ö)l'3i«3(ft-ft).  (7b) 
V £2A2     ' V        £iAi     / 

Equation (7a,b) shows that the conservatively coupled three-subsystem case can be 
put in a form where the energy flows become functions of the average energy per mode. 
Two additional, so called, indirect couplings must be introduced to yield this solution. 
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2.2.     CONSERVATIVE COUPLING:  COUPLED SUBSYSTEM 
ENERGY 

Equation (1) can be rewritten as a function of subsystem energy 

U/V3 

SEl | 

SE2 r°> 

SE3 

JJl+7?12+7?'l3 -7?21 -T?'31 

-JJ12 7?2+T?21+»723 -J?32 

-7?'l3 -»723 IJ3+7?'31+132 

(SEl\ 

SE2   • (8) 

\SE3 I 
The form of equation (8) is found if the parts of equation (5) is solved separately and 
thereafter assembled. No terms in the matrix [V][R]'} become zero as is normally 
assumed in SEA. Therefore, coupling coefficients should also be introduced for the two 
plates that are not directly coupled to each other, i.e. indirect couplings should be 
included to yield a complete solution for the power input balance. 

)j>Pin. 
0>1lfl fv, 

»12*2 
^ft.,3 

SE\ 

V»TJ2£; 

SEI 

JSlKf.1 

SE3 °*n'i£i 

•4  <Otl'3E3 

TJEI J«m*2 30*136 

Figure 2. Hie extended energy flow model with its subsystems, kinetic energies (S«), power inputs 

(ßpj), energy flow components ((OTfuEß and power losses (ttn\fi;). Note that the spectral density of 

the subsystem enery is abbreviated to Ej for the energy flow components and the power losses. 

2.3. TERMINOLOGY 

The energy flows of equation (2) can be rewritten to become a function of coupled 
subsystem energy 

/ SEl 

T?23 (r/32+J7'3l) J I 

5Pl-< [PP] [*]-! Li   l- 
SPI.. •>2 

SE3 

(nn+n'n) 

•1\ 13 

-TJ21 -»7 31 

SEi (9) 

Comparison of equation (7) and equation (9) shows that the energy flows can be 
expressed as a function of uncoupled and as a function of coupled subsystem energy. 
Scrutiny of the equations shows that the couplings change when they are changed to 
from a function of uncoupled to become a function of coupled energy. The change in the 
couplings is the same as 
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{Eav, 1 )   \ 

(Eav,l)      = 
{Eav, 3)   \ 

"""ÄeiAi         °               ° (SEi 

[R]-11 sE2 0    miie^    0 

.   0       0    miiE^. 

(10) 

which can differ markedly from unity. 

Equation (10) shows that it is advisable to ideologically separate couplings that refer 
to the uncoupled case from those that belong to the coupled case. The couplings, again, 
change if the energy flows (Pf;) are instead extracted from ensembles or other 'statistical' 
situations rather than from the single case in equation (7a,b). 

Discussion can therefore easily be confused when these factors cannot be clearly 
distinguished from each other. The following terminology is therefore adopted: factors 
that refer to average energy per mode (and a weak coupling approx. of coupled energy) 
and energy flows that refer to 'statistical' (archetypal) situations are termed Coupling 
Loss Factors (CLFs) (as is commonplace today); factors that refer to average uncoupled 
energy and energy flows for a particular case is termed Uncoupled Energy Flow 
Coefficients (UEFCs); and factors that refer to coupled subsystem energy and energy 
flows for a particular case are termed Coupled Energy Flow Coefficients (CEFCs). 

The CLF, the UEFC and the CEFC are expected to become identical in situations 
where the archetypal trend starts to show in the single case. Note that the notation in 
the algebra does not cater for the above mentioned differences and that the same 
coefficients merrily are used for various coupling types without further censure. 

2.4.     NON-CONSERVATIVE COUPLING:  UNCOUPLED 
SUBSYSTEM   ENERGY 

The flow of energy in equation (7a,b) becomes 

Spl.>2=<OT]i2ni0\+ornnni(0i-93), and Sp3.>2=o>m2me3+0}T]3ln^9i-9i)   (lla,b) 

respectively, when no excitation occurs in subsystem 2, i.e. when, by definition 62 = 0. 
Unfortunately, equation (lla,b) does not support 'energy flow reciprocity' which makes 
it less attractive for introduction into a non-conservative two-subsystem model. 

However, it can be seen from equation (lla,b) that the energy flow that is 
communicated between subsystems 1 and 3 yields a transmission path that fulfils the 
requirement of 'energy flow reciprocity' and is 

5/"i->3=ffln'i3«i(öi-ft) . (12) 

The case that is considered to produce positive values for Sp'i.>3 is when energy flows 
in the direction from subsystem 1 to subsystem 3 equation (12) applies for energy-flow 
across the fictitious subsystem interface of Figure 3(b). 
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The power balance can, after some steps of algebra, be stated as 

&>,-„, I=©(TJI+??I2+*?'I3>H0I >andS/>,n,3=ß)(j73+*?32+*7'3l)»3% ,    (13a,b) 

for subsystems 1 and 3, respectively (Figure 3(c)). 

Introducing the weak coupling approximation Ej = rijGj for the coupled subsystem 
energy yields, after some extra steps and further motivation, the approximate power 
balance 

Spin, i 

SPin, 3 
= fi) 

(jji+7712+17'13) -V 31 

-T?'l3 (f?3+f?32+n'3l)J| SE3 

SEI 
(14a,b) 

The difference between equation (13a,b) and equation (14a,b) may at first seem 
surprising but is invoked by that fact that a response (that is larger than zero) cannot 
exist in the receiving subsystem in equation (13a,b) without violating the total power 
balance of the system. 

Equation (14a,b) shows that the non-conservative case can be introduced into SEA if 
indirect Coupling Loss Factors (CLFs) and suitable radiation factors are derived. 
However, few indirect CLFs are available today. Development of such factors is 
desirable as it shows promise at expanding the applicability of SEA to a wider range of 
cases. 

IS*,! P 

-1—■   arfuflfo   ■—* 

Sfi„3 

I <0T}i2ttdi     07732/130)    I 

Figure 3 a) The energy flow model in which the physical subsystem interfaces are used, b) The 
conceptual energy flow balance fin which the energy flows of Figure 3(a) are re-expressed into 
one indirect and two radiating path s. c) The non-conservatively coupled energy flow model the 

way it can be expressed in SEA. The dashed lines symbolise the fictitious subsystem interface that 
must be introduced into the model. 
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2.5.      NON-CONSERVATIVE  COUPLING:  COUPLED  SUBSYSTEM 
ENERGY 

Most measurements or calculations refer to systems in which a response occurs in 
the receiving subsystem. It is obvious that such cases, by definition, must refer to 
coupled rather than uncoupled subsystem energy. The weak coupling approximation of 
the coupled subsystem energy may not be sufficient for all of these cases. 

The experience from the discussion above is that one should be cautious not to take 
the benefits of the uncoupled subsystem energy for granted also for coupled subsystem 
energy. A separate evaluation is therefore motivated for this kind of subsystem response 
coordinate. 

The power that is injected into the subsystems, the kinetic energy for the plates and 
the energy flow out of plates 1 and 3 and the power that is dissipated in the plates can 
be written as 

(16) 

and 

Sri-> 

IPP31 PP23 
(17) 

respectively. Note that equation (17) does not contain the symmetry that is required. 

The energy flow out from the subsystems can be rewritten as 

Sri -> 

Sf3-> 

U21-PP31 PPl3 

PP31 U23-PP13 

1l2(l) 132(1) 

^([tr^pp-])^]-1'51 

= Q> 
.1l2(3)t?32(3). 

53 

1} 13 

)( 

53 

SEI 

SE3 
(18) 

1 31 

1 13  1 31 . 

where the power that is dissipated in the intermediate element (the Uy terms on the 
diagonal) has been separated from the energy flow between subsystems 1 and 3. 

Equation (IS) thus becomes 

(ll+l?12(l)+l'l3)      -(l'31+l32(I))      I   SEI 

"(ll2(3)+l'l3)     (»?3+Tj'31+Tj32(3))Jl   SE3 ::; KJ,( *: H (19) 

when it is rewritten to become a function of coupled subsystem energy. 
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Two additional, (off-diagonal) radiation factors can be seen to appear in equation 
(18). Therefore, no terms in the matrix [VJtÄj'can be separated purely from a 
knowledge of the power inputs and subsystem responses. To access the complete 
information content in the right hand side of equation (19) requires explicit knowledge 
of the energy flows and the dissipative powers. Therefore, the input power balance must 
be given the simplified interpretation 

SPin, 3 

= (0 
{ai+an+a'13) - a,3\ 

- a'n (a3+a32+a'3i) 

SEI 

SEI 

= 0) 
(aitoH-a'13) -a' 31 

SP> 
£        <P(7fe2(3)-7fc2(l)))Sg3  4/*'? 

SE\ 

- a'is       {ototot+a'u) J \ SEI 
(20) 

ÖHWß 

Figure 4. Hie energy flow model for the non-conservatively coupled two-subsystem case in which 

coupled subsystem energy is utilised, a) The complete model for the case of viscous damping, b) A 

simplified interpretation of the input power balance. The inclination of the two lowest arrows 

signifies that the radiation, re-radiation and dissipation is combined and treated as a single factor. 

Note that the power input is explicitly balanced by equation (20). It is only the 
function of the pseudo coupling and loss factor data that is inaccurately interpreted with 
respect to the derivation of the energy-flow. The form of equation (20) is identical with 
the results of other authors, e.g. [11-13], even though types of subsystem response 
coordinates other than coupled subsystem energy have been used in these examinations. 

Furthermore, comparison of the simplified interpretation (equation (20)) and the 
weak coupling approximation (equation (14a,b)) shows close similarity. Therefore, it 
may be anticipated that the simplified interpretation of the power balance improves 
when the coupled subsystem energy resembles the uncoupled subsystem energy. 

However, one should be cautious not to draw too much on this similarity and the 
experience from the conservatively coupled two-subsystem case. The author's experience 
from numerical simulations is that the success of equation (20) does not depend on the 
strength of the indirect coupling. What matters is how large the on-diagonal radiation 
factor is in comparison with a subsystem's Dissipation Loss Factor (DLF). Cases in 
which one subsystem's DLF is smaller than its radiation factors can be shown to yield 
satisfactory estimates of the energy flow when this subsystem is the excited subsystem, 
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while poor results are obtained when the situation is the reverse and it instead becomes 
the receiving subsystem. 

In short, such cases can be expected when a receiving subsystem is unable to destroy 
the power transfer from an indirectly connected subsystem (which is where the source is 
located). This type of cases is invoked when the receiving subsystem is either lightly 
damped or is unable to accumulate energy. Examples of the latter are when the 
subsystem is rigid, limp or at anti-resonant frequencies. An explanation for this 
'asymmetric' behaviour is given below. 

The power balance of the total system is obtained by summing the rows of equation 
(19), which yields 

SPin. 1 + Spin, 3 = ffl {(TJl+77l2(l)-ni2(3))SEi + (Tj3-rj32(l)+J}32(3))SE3}   • (21) 

Comparison of the subsystem and total system power balances of equation (20) and 
equation (21), respectively, shows that 

SPin. 1 - ffl(m+J?120)-*?12(3)>SEi = ö(*7'I3+J712(3))SEI " öK^i+^dj^ß =       (22a) 
= fi>(7j3-f?32(l)+J?32(3))S£3 

when Spln 3 = 0 and 

SPto.3 -   <0(fj3-J?32(l)+f?32(3))S£3 = <ü(j7'31+f?32(l))SE3 " ß>(*7'l3+J7l2(3)fe =      (22b) 
= Ü)(7JI+TJI2(1)-JJ12(3))SEI 

when S/v, = 0. 

The actual energy flow is yielded by use of the indirect couplings. Examination of 
equations (22a,b) shows that the energy flow is likely to be overestimated since the off- 
diagonal radiation factors tend to be smaller than the on-diagonal radiation factors. The 
matrices that are involved shows that the off-diagonal radiation factors tend to be smaller 
than the on-diagonal radiation factors. Exceptions can be found, e.g. at frequencies where 
the kinetic energy is much larger in the receiving than in the excited subsystem. The 
determinant of matrix [R] is negative at such frequencies and, thus a sign change can be 
expected for the couplings. Furthermore, the on- and off-diagonal radiation factors cancel 
which reduces the error in the energy flow estimate. The effect of the off-diagonal 
radiation factors in equation (20) is that the energy flow is over-estimated. 

Equations (22a,b) show that one excitation case can be poorly described while 
excitation of the other subsystem can yield good results, i.e. equation (22a,b) may 
independently yield a poor or reasonable approximation. It can be seen that the relative 
size of the radiation factor sum (e.g. 1)32(3) - V32(l)) W1^1 respect to the dissipation 
loss factor (e.g. 773) of the receiving subsystem (e.g. 3) is what matters. 

The author's experience from numerical examinations of the three-plate case 
suggests that successful application of equation (20) does not depend on whether the 
indirect energy flow is weak or strong. As mentioned above, it is the re-radiation 
strength of the receiving subsystem that matters. The energy flow that is communicated 
between subsystems 1 and 3 can be quite weak and equation (20) still yield valid results 
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as long as the re-radiation is small in comparison with the dissipation. This indicates 
that it should not matter whether large distances or several subparts exists between 
subsystem 1 and 3 or if the intermediate element is lightly or heavily damped. 

The derivation of the above mentioned equations does only rely on the form of the 
power balances. It may therefore be speculated that they hold also for the case in which 
the intermediate element (subsystem 2) encircles subsystems 1 and 3. A possible future 
use of equation (20) may therefore be as an approximate tool in the experimental survey 
of dominant transmission paths in structures that are not (too) lightly damped. An 
examination of this kind was applied for joint with air-pumping and mechanical point 
connections in parallel by Sun et al [12]. The numerical survey implies that it should 
be possible to take the use of equation (20) even further (although with caution). 

In sum, the DLFs and radiation factors must be separated for the non-conservatively 
coupled two subsystem model to yield the actual energy flow. The energy flows are 
otherwise incorrectly derived. Measuring the power inputs and subsystem energies of 
two non-conservatively coupled subsystems does not yield enough information to 
separate the DLFs from the radiation factors with the current approach. A simplified 
interpretation of the power balance (equation (20)) is therefore found necessary. The 
approximation of equation (20) is such that it tends to overestimate the energy flow. 

The DLFs may be assessed from a separate measurement if they remain unchanged 
when the subsystems are decoupled. However, it should be recognised that the 'inverse' 
non-conservative power balance need not be used when the DLFs are already known. 
Instead, the energy flow can simply be derived from the dissipative and input powers of 
subsystems 1 and 3. The advantage of the non-conservatively coupled two-subsystem 
model is that it yields the radiation factors which may serve as a measure of the 
efficiency of the dissipative joint. However, most cases cannot be decoupled and 
practical application of this approach may thus be restricted. 

3.     Conclusions 

Two non-conservatively coupled subsystems was demonstrated as a special case of 
the three-subsystem configuration. The physical subsystem interfaces cannot be directly 
applied in the non-conservatively coupled two-subsystem model for the simple reason 
that only a single interface can be used in the non-conservatively coupled two- 
subsystem model. A fictitious interface was therefore introduced to account for the 
transfer of energy between the non-conservatively coupled subsystems. 

Two kinds of non-conservatively coupled energy flow models were derived for cases 
in which uncoupled and coupled subsystem energies are used. The first type, that refers 
to uncoupled subsystem energy, can be used in a 'forward' fashion when setting up a 
SEA model, while the second type, that uses coupled subsystem energy, is appropriate 
for 'inverse' computational or experimental analysis procedures. 

Two versions of the power balance were deduced for the coupled case. The first 
version contains a complete information set that cannot be revealed from the power 



12 C.R. FREDÖ 

inputs to and responses of two subsystems. The crux of the matter for the non- 
conservatively coupled two-subsystem model is that four radiation factors must be used 
when the power input is expressed as a function of coupled subsystem energy. A 
second, simplified, version was therefore introduced for approximate analysis of the 
energy flows. This simplification can yield perfectly valid results when exciting in one 
of the subsystems and truly fail when the other subsystem is excited. The degree of 
approximation depends on how large the receiving subsystem's dissipation-loss and 
radiation factors are in comparison with each other. 

A few speculations about extending the use of the non-conservative power balance 
were made to suggest directions for further research. The non-conservative two- 
subsystem case may be applied in the search of dominant transmission paths in 
structures that are not too lightly damped. However, un-cautious use of the simplified 
power balance is not recommended as it yields the energy flow by approximation only. 

In conclusion, a dual interpretation of the conservatively coupled three-subsystem 
case and the non-conservatively coupled two-subsystem case can be made if indirect 
couplings are introduced. Further development of such factors for introduction to SEA is 
therefore desirable and may help expand the applicability of SEA. 
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Equation (2) should be renamed as equation (2a). Manipulating the upper and lower rows 
of equation (2a) to include the energy flow to subsystem 2 yields that 
lSPu>\ [      PP2i PP12 PPn 
Sp^ = {-PP31-PP21) (-PP32-PP12) (-PP13-PP23) 

UP3.J L    PP31 PP32 PP23 
The superscript + in the matrix [PP+] signifies that a row has been added. 

The 3rd sentence in the paragraph before equation (5) should read 
Equation (3) is similar (and in some situations identical) to the energy part of the "Greens 
function" formulation that Langley used in reference [4]. 

Equation (5) should read 

lS Pin, 1 

(2b) 

sD. .Lrvi spin,i 

SPin, 3 

[v]   si 
\ S3 1 S3 J 

(5) 

Summing the [U] and [PP+] matrices for the dissipated power and the energy flow out of 
the subsystems, respectively yields the diagonal [V] matrix for the power input 

The 1st sentence in the paragraph before equation (15) should read 
The experience from the discussion above is that one should be cautious to take the 
benefits of the uncoupled subsystem energy for granted also for coupled subsystem 
energy. 

Equation (17) should read 

SFI.>\JPP2IPP\3][S^ 

SP'3->\     [PP31PP23WS3I 
= [PF Si 

S3 
(17) 

Addendum 
The power input for the non-conservatively coupled case can be divided into the 
following subparts 

Ö=[V"](l'l=([£/1 + ([C/'] + [Piy]))i"3 
where the power which is lost in the non-conservative junction is 

5/"i->L 
SP'3-> 

U21 
0 

0 
U23 £)-M{£ 

and the power which is lost in the subsystem is 

diss, 1 \SP< 

\SP'diss, 

Uu 
U31 U33 ISI-^IS 

(19b) 

(19c) 

(19d) 

Re-expressing equation (19c) as a function of coupled subsystem energy yields four 
radiation factors. Re-expressing equation (19d) as a function of coupled subsystem 
energy yields two dissipation loss factors on the matrix diagonal. 
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Predictive SEA is mainly based on the wave approach. For plate networks the main 
computational procedure is associated with the calculation of the infinite plate to plate 
random incidence transmission coefficients. This paper outlines a method for such a 
procedure based upon generalising the ID concept of a point impedance to 2D concept 
of a line wave impedance. Formulae are presented for the line wave impedance of an 
infinite Timoshenko beam and a thin semi-infinite plate, and for the cross line wave 
impedance of a strip plate of finite width. 

These formulae are used to calculate plate to plate SEA coupling loss factors. 
Experimental results are compared with this theory for the particular case of an 
assembly consisting of two plates connected to the diagonally opposite flanges of an 
I-beam. Very good agreement is shown. The theory using strip plates is shown to be 
superior and asymptotic to two other approximate theories one of which can be 
assumed accurate at low frequencies and one at high frequencies. 

The theory has been extensively validated against the measured response results 
from many test assemblies. 

1.    Introduction 

Predictive theory based on the modal approach to SEA is very difficult to apply to 
complex structural assemblies, firstly because of the computational load and secondly 
because of the many assumptions that seem to be necessary. On the other hand the 
wave approach to the calculation of SEA coupling loss factors is computationally 
efficient and seems to be governed by a single assumption. This assumption, that the 
infinite canonical form of each junction need only be studied and that the resulting 
infinite transmission matrix can be used to calculate finite coupling loss factors, is 
clearly valid 'on the average' once wavelengths have become much smaller than 
typical subsystem lengths. In feet experience has shown this assumption to be valid 
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down to frequencies associated with modal overlap factors of about one, and for many 
vibro-acoustic problems such frequencies lie below the frequency range of interest 

Another advantage to the use of the wave approach is in the choice of SEA 
subsystems. At least for plate and beam assemblies this choice becomes somewhat 
automatic, as against involving engineering judgement, by the need to match a 
transmission matrix element to a coupling loss factor. Thus each wavetype within a 
plate or a beam has to be modelled as at least one subsystem 

The critical theory for predictive SEA is thus associated with the calculation of 
these infinite transmission matrices. This paper describes such a calculation procedure 
for a general line connection of plates. It is based on the use of line wave impedance 
matrices, analogous to the use of point impedance matrices for beam networks. 
Formulae are presented for the line wave impedance of semi-infinite plates, infinite 
beams and infinite strip plates The method by which these can be used to calculate the 
required transmission matrices is described. 

Predictions using this theory are then compared with the measured results from a 
two plate assembly. It is shown that typical connecting I-beams cannot be modelled 
using beam theory because of the dynamic behaviour of their webs, however by 
modelling the beam as a series of connected strip plates very good agreement is shown 
between theory and experiment 

2.    Basic SEA theory 

When plates are joined along a line the SEA coupling loss factor TJ^ between plate a 
and plate b is normally calculated using the formula 

iU=T^. (1) 

where GO is the circular frequency, km and na are the wavenumber and modal density 

of plate a respectively, L is the length of the line connection, and Tto is the infinite 
random incidence transmission coefficient between plate a and plate b. This infinite 
transmission coefficient is simply the transmission coefficient associated with the 
canonical junction of infinite extent. 

Normally each plate will have three travelling wave types associated with it one for 
the bending waves, one for the inplane compression waves and one for the inplane 
shear waves, and these will give rise to a transmission matrix of order three times the 
number of plates at the line junction. Through equation 1, this will result in a similar 
order matrix for the coupling loss factors between all the plate wave types. 

Knowing the angle dependent plate to plate transmission coefficient T„,(9,) where 
0, is the normal angle of incidence, the random incidence transmission coefficient 

Tte is calculated using 

T4.= |ti.(9.)cos(e.)d0. . (2) 
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Thus the calculation of the SEA coupling loss factor T)^ between plates at a line 
junctions is dependent on the calculation of 1^(6,). The general calculation of 
x*.(6«) usually proceeds as follows. 

A plane incident wave is assumed with a given incident angle 6, , for a given plate 
and given wavetype. The power incident on the line junction is then calculated 
together with the input velocity and the induced force on the junction at the plate edge. 
These calculations are simple functions of the plate supporting the incident wave and 
are independent of the other plates and the connection complexity of the junction. 

This 'external' force is then imposed on the junction and the junction velocity 
calculated. It is then a relatively simple matter to use this junction velocity to deduce 
the various output wave type powers, and by dividing by the input power to calculate 
xta(3«) ■ The rnajor part of the procedure is thus associated with the calculation of the 

junction velocity from a knowledge of a given external force. 

3.    Line wave impedances 

At a point connection there are six degrees of freedom but at a line connection there 
are only four. This is fundamental and simply associated with the geometrical 
relationships that must exist along a line once we assume all variables have a simple 
dependency in the direction of the line. Let the connection line be parallel to the x axis, 
then for a given trace wavenumber k (a simple function of the incident wave) all 
variables must have an x dependency of e'm . 

Now the usual line velocity and line force variables are taken to be 
v'T=(v,   v,   vf   wx), 

r=(/x   fy+ibni   ft-ibn,   mj, 
where superscript T denotes a transpose, v represents linear velocity, w represents 
rotational velocity,/represents force, and m represents moment. 

The aim herein is to generalise the well understood point impedance approach and 
define a suitable line wave impedance. Unfortunately some of the useful properties of a 
point impedance are lost if a line wave impedance is defined in terms of the above 
variables. However it is possible to overcome this problem by defining a new set of 
variables such that 

vT=(-tfr'v,   v,   v,   wx), 

t ={-Hfx   f,+ibnt   ft-ibny   mz). 

This is a mathematical trick that is not essential but is very desirable, for if we now 
define a line wave impedance Z using the formula 

f = Zv, (5) 
we find that all line wave impedance matrices are symmetric and furthermore that the 
line wave impedance matrix of a reactive element, such as a beam, is purely imaginary. 
Such properties are clearly analogous with the properties of point impedance matrices. 
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The change of variables is allowed, without loss, because any set of variables is 
acceptable provided we ensure conservation of power, that is 

power oc fHv=f'V, (6) 

where superscript H denotes a complex conjugate transposition. 
All the subsequent formulae in this paper use line variables defined by equation 4. 

Line wave impedances can be added together just like point impedances and cross line 
wave impedances can be used to model for example a strip plate just like a cross point 
impedance can be used to model a finite beam. Furthermore these impedances can be 
transformed to cope with small rigid offsets and rotations using the following 
transformation matrix 

"10 0 01 

q> = 
COS<] 

sind 

-sin<|> 

cos<)> 
(7) 

0   psin<|>-gcos<|>   />cos<(»+gsin<()   1 

where the local axis is at position (0   p   q) with respect to the global axis origin and 

the local y and z axes are at an angle <)> with respect to the global y and z axes. To 
transform a line wave impedance from local co-ordinates to global co-ordinates we 
simply use <pZ<pT. 

4.    The line wave impedance for a beam 

The twelve cyclic equations for a Timoshenko beam can be used to generate its line 
wave impedance. This is done by imposing each of the four line forces in turn and 
calculating the line velocity responses to give the 4x4 line wave mobility matrix which 
can then be inverted to give the line wave impedance matrix. The assumption is that 
the beam is acting along a single connection line. 

The problem associated with plates attached along different lines of the beam 
section, such as the opposite flanges of an I-beam, is better solved by modelling the 
beam as a series of strip plate elements rather than by introducing a special six degree 
of freedom element as cited in Langley and Heron (1990). Practically all engineering 
beams are thin sectioned beams and should be modelled as a series of strip plates in 
order to accurately predict the beam dynamics at the mid and high frequencies. Thus 
the beam formulae of this section should be used sparingly. 

After some algebra, the line wave impedance for an infinite beam about its centroid 
can be shown to be given by the following formulae 

[L       0 0 0 

iooZ, bMD-astnM 

0 K 0 -ttk% 

0 0 *; +e,*4Äy 

0 -zzk% +e,k*By T 

L = k*{k2EA-<a2m') , 

(8) 

(9) 
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k*B= 

k2B. 

Fy=k4By-(a2m' , 

l+&(k2By-<s>%) ' 

{k%-tfHt) 

(10) 

(11) 

(12) 

(13) 
'    1+4(^-0,^)' 

T^ = k2GJ-(üiHI + e2
yk

4By +z2
lk

4Bl , (14) 

where E is Young's modulus, A is the cross sectional area, m' is the mass per unit 
length, By and Bt are the two bending stiffnesses, G is the shear modulus, Ky and Kz 

are the two thick bending shear coefficients, GJ is the torsional stiffness, Hx, Hy and 

Hz are the three moments of inertia of the beam cross section and (e^, e J is the 

position of the beam shear centre with respect to the centroid. 
Using the transformation matrix of equation 7 the line wave impedance for an 

infinite beam about its shear axis can also be derived 

KDZ.. 

L 0 0 0 
0 K 0 -zza

zm' 
0 0 F, +ey(üzm' 

0 -z^tri +zy(o
zm' T 

T^t=kiGJ-<ai(Hz+m'£z
y+m'el) ■ 

(15) 

(16) 

5.    The line wave impedance for a semi-infinite plate 

The line wave impedance for a thin isotropic semi-infinite plate is given in Langley 
and Heron (1990) and is reproduced here with a few slight changes associated with the 
new definition of a line wave impedance as described above. 

Z °   °^ ta"~    0   0 
0   0 
o o  z- 

z,^. — 

toZ <a2m"Jfc; 

(*2-YX) 

KaZ___ = <ä*m"k, 

k2kX 
k*{2k*-k:-2yj,) 

Y,Y.(Y»+Y,) yje+ok 
Y»Y,+C*2    (Y»+Y.) 

yl=k*-kl , 
Y:=**+*». 

(17) 

(18) 

(19) 

(20) 

(21) 
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t' F-K , 
t = V-k] , 
Bkl = <a2m" , 

Ck) = <ä2m" , 

SK = ß>2m" , 

(22) 

(23) 
(24) 

(25) 

(26) 

where B, C and S are the bending, compression and shear stiffnesses of the plate, a is 
Poisson's ratio and m" is the mass per unit area of the plate. Unlike in reference 1 
Zbending is now a symmetric matrix. 

6.    The cross line wave impedance for a strip plate 

The cross line wave impedance for a thin isotropic strip plate is given below. The strip 
is assumed to occupy the 0 < y < W part of the xy plane, where W is the strip plate 
width. As with the calculation of the impedance of a thin isotropic semi-infinite plate, 
the process is split into one involving the out-of-plane bending motion and one 
involving the inplane motion. Eight line variables needed here and they are chosen 
such that the first four refer to the edge at y = 0 and the last four refer to the edge at 
y = W. The 8x8 Z^ matrix is then made up as follows 

-• ii-ii 

o 

•"L-Jl 

0 
0 

■• in.12 

0 

'»-2a 

0 
0 

(27) 

This impedance matrix can be transformed from local to global co-ordinates using 
the 8x8 transformation matrix given by 

,    0 
r«3> 0    q>2 

(28) 

where <p, is the 4x4 transformation matrix for the first edge of the strip with respect to 
the global co-ordinates chosen for this first edge connection point, and q>2 is the 4x4 
transformation matrix for the 'strip extension' with respect to the global co-ordinates 
chosen for this second edge connection point The 'strip extension' refers to an 
imaginary plate occupying the W < y < «> part of the xy plane. 

After much algebra the out-of-plane cross line wave impedance Z^ can be shown 
to be given by the following formula 

««>fc.Y.=Y, . (29) 
where 
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V, 

V/ = 

Co    Co c,    -c, 
c2 -c2 c,    c, 
W Co*"1 C,ß -Cß1 

C2*> -C/-1 Caß     CO" 
c< -c4    C5     Cs 

c«    c    c,    -c7 
-V C/'1 -C5ß -C,ß" 

L-c/ -c/-' -c7ß c7ß-j 

(30) 

(3D 

and where 

(32) 

Co=l 
C,=i 

C2=-Y> 
C3 = -Y, 

C,=CoCsC 
c7=c1c4cr 

The inplane cross line wave impedance Z.a can similarly be shown to be given by 
the following formula 

i(QZt\y,=yf , (33) 

where y,  and  \|f/  are still given by equation 30 and equation 31 but where 

equation 32 is replaced by 
C,=i 
C,=Y, 
C2=Y< 
C3=*2 

C,=2*2Y,S 
C5=*2(Y.2+*2)S  " 

c7=c1c4c2- 

It can also be shown that in all cases D = ^y? is a real symmetric matrix. Thus 

Z^ is an imaginary 8x8 symmetric matrix; imaginary as expected because the strip 

(34) 
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plate has no damping. It is possible to evaluate D by numerically inverting yv, 
however this can cause numerical problems especially near W = 0. The following 
algebraic formula for D can be used instead. 

~dH    d12     4     dlt ' 

AD= d"    da    ~d"    d" 
d„   -d»    d,,    -di2 

di4    d„    -d,2    dn 

4=CoC,(C3C+c2c5)[4Pö-(i+/'2)(i+ö2)]+(a3C5+ac<)(i-/
,2)(1-ß2). o?) 

4, =2(C2Cs-C3Cj[CoCJ/
>(i-o2)-C1C2o(i-/>2)]. (38) 

4, =2CoC,(C2C,-C3Cj[/>(1+ß2)-ö(i+/>2)]. (39) 

4 =^L(c3;4-;2c5)[CoC3(i-/
>2)(i+ß2)-c,c2(i+^)(i-ö2)].    m 

*2S3 

dM =2^(c2c-csc4)[^o(i--p1)-^^-e2)]. (41) 

A = 2CoC1C2C3[4/'ß-(l + Pz)(l + ß2)] + te+C1
2C0(1-^2)(1-ö2) •  (42) 

7.    Experimental validation 

An assembly consisting of two aluminium plates (thickness 2mm and 4mm) connected 
by an I beam was manufactured and is shown diagramatically in figure 1. Damping 
material was attached to each plate in order to keep clear of SEA equipartition. 

Figure 1: The Zassembly 
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The structure was excited at five random positions on each plate and the response 
of each plate measured using five randomly positioned miniature accelerometers. This 
allowed full SEA inversion to be used to obtain the coupling loss factor matrix, and 
from this the in-situ damping levels for each plate. Taking account of both the direct 
vibration field associated with point excitation and the acoustic radiation damping, a 
simple mechanical loss factor was fitted to these data. The resultant assessed energy 
loss factor was 1.8% for both plates, constant across all frequencies. This value was 
inserted into all the SEA theoretical models; the in-plane loss factors were taken 
arbitrarily to be one third of this value. 

This process of inverting the measured energy matrix to obtain the in-situ damping, 
then using these measured damping values in a theoretical prediction of response, and 
then comparing these predicted responses with the original measured responses needs 
a little explanation. The alternative and simpler approach would be to compare 
predicted and measured coupling loss factors. However there are two disadvantages to 
this alternative approach. Firstly the measured variance of the coupling loss factors is 
often large and secondly the measurements and inversion process has to assume a two 
subsystem model (i.e. no inplane motion) and thus the measured coupling loss factors 
are not necessarily what they seem. These effects can give a biased result and /or an 
inconclusive comparison with theory. 

The approach adopted here is an attempt to bypass these problems by arguing that 
comparison with theory should occur in the response plane so that the theory can take 
full account of the inplane motion and then all that is needed is a good estimate of the 
damping. The best estimate of this is obtained from the inverted energy matrix on the 
assumption that any inplane motion energy losses are very small when compared to the 
out-of-plane losses. 

Using this approach the results for the Z-assembly are shown in figure 2. The result 
are expressed in terms of the response velocity normalised to the input drive point 
velocity. The 90% confidence limits as well as the mean are plotted for the 
measurement results. 
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100 1000 10000 

frequency(Hz) 

Figure 2: Response of2mm plate due to forcing on 4mm plate 

Three theories are plotted on figure 2. The Timoshenko beam model was calculated 
by treating the I-beam (the centre section of figure 1) as a beam. The web plate theory 
was calculated by treating the web of the I-beam as an undamped SEA plate with the 
two flanges äs coupling beams in a three plate SEA model. The strip plate theory was 
calculated using five strip plates, two semi-infinite plates and no beams as outlined in 
figure 1. 

Treating the full I-beam as a beam is a good model at the lower frequencies but 
introduces errors in excess of lOdB at frequencies above 1kHz. Treating the web as an 
undamped SEA plate gives remarkably good agreement for frequencies above about 
1kHz. It is to be expected that this model will be accurate at the highest frequencies but 
it is somewhat surprising that it is accurate down to 1kHz. 

The strip plate model is remarkably accurate over the whole frequency range. It is 
asymptotic to the other two model and at about 1kHz predicts a smooth transition 
between these two approximate theories in good agreement with the measurements. 

8.    Discussion 

The wave approach, as against the mode approach, is the usual method of calculating 
SEA coupling loss factors. This is mainly because the mode approach is inherently 
computationally expensive because it involves the evaluation of complicated integrals 
to deal with the necessary averages over space and frequency (Lyon and DeJong, 
1995). Occasionally a particular junction is so complicated that the wave approach 
cannot be used because the junction is neither a point, a line or an area. In such 
situations a theoretical evaluation of the coupling may have to use the mode approach. 
However it is now clear that whenever possible the wave approach is to be preferred, if 
for no other reason than that of computational efficiency. 
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Furthermore the wave approach assumptions, as against the mode approach 
assumptions, can be more easily understood. Indeed the wave approach only assumes 
that a given infinite transmission coefficient is a good approximation to the 
transmission coefficient for the finite assembly. This will be valid at high frequencies 
where we can assume far boundary conditions to be unimportant as compared to the 
junction boundary under consideration. The lower limit of applicability is associated 
with the frequency at which the modal overlap factor (average modal bandwidth 
divided by average modal separation) is unity. This is not surprising because below this 
frequency individual modes can become important and this is equivalent to far 
boundary conditions becoming important. 

The wave approach to the calculation of SEA coupling loss factors has been used 
from the earliest days in the development of predictive SEA, but perhaps it is only in 
recent times that it has been realised that further assumptions with regard to the 
connecting structure are unwise. For a general line connection between plates, the 
conclusion has to be drawn from the results of this paper that an accurate model of the 
dynamics associated with the connecting beam is necessary in order to accurately 
predict the SEA coupling loss factor. 

Fortunately practically all engineering structures use thin sectioned beams and the 
strip plate theory presented herein is well suited to accurately model such connecting 
beams. It should be noted that any thin sectioned connecting beam (open, closed, 
multiply connected) can be modelled with this theory by using appropriate 
transformation matrices and applying the theorem of impedances addition. 

The theory can be simply extended to include 'thick' isotropic plates and indeed 
any transversely isotropic plate although care is needed in dealing with the sixth rather 
than fourth order bending equations. The possible extension to anise-tropic and curved 
plates introduces a further complication associated with the variation of group and 
phase velocity with heading direction and it is unclear as yet how this will be 
overcome. 

Finally, the theory presented herein has been successfully used to predict the vibro- 
acoustic response of many test assemblies. These have included a box assembly of SO 
plates (Heron, 1995) and a real helicopter fuselage modelled using 369 plates (Rossall 
and Wood, 1995); both of these structures were studied within the CEC Brite EuRam 
project RHINO (Reduction of helicopter interior noise) which concluded in 1996. More 
recently under the Anglo-French project DOVAC (DERA:ONERA vibro acoustic 
collaboration) the response of a 26 plate box assembly with 5 internal volumes was 
accurately predicted (Monger et al., 1997). 
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9.    Conclusions 

A theory has been presented which can be used to predict plate to plate SEA coupling 
loss factors for a general junction consisting of thin isotropic plates connected by a thin 
sectioned isotropic beam of any cross-section. 

Experimental results are compared with this theory for the particular case of an 
assembly consisting of two plates connected to the diagonally opposite flanges of an 
I-beam. Very good agreement is shown. 

The theory is asymptotic to two other approximate theories one of which can be 
assumed accurate at low frequencies and one at high frequencies. 

The theory has been extensively validated against the measured response results 
from many test assemblies. 
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1.0 Introduction 

A beam which is line-connected to a plate is a commonly encountered arrangement in 
structure-borne noise studies (Figure 1). The modeling of the transmission of vibrational 
energy through this assembly using Statistical Energy Analysis (SEA) raises several 
issues. [1] 

Figure 1. A panel stiffened by spars and stringers can be modeled as plates (1-6) 
interconnected at beam-stiffened junctions. 

First, the motion of a beam is by definition completely defined by the motion of the 
junction. A panel facing an acoustic cavity is similar. Second, a plate can significantly 
load a line-connected beam, altering its in-situ free wavenumber and effective mass. 
Again, this is analogous to the familiar reactive (mass) loading of a panel facing a dense 
acoustic medium such as water [2]. Third, if a line-force source acts on the beam with a 
wavenumber different to the beam wavenumber, then power supplied to beam modes 
may be negligible but power supplied to the line-connected plate modes—through the 
non-resonant response of the beam—may be significant. This phenomenon could be lik- 
ened to "mass law" transmission loss for the structure-acoustic coupling case. 

In this paper, we pursue these issues for a single beam-stiffened junction of two 
plates. 
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2.0 EARLIER WORK 

Goyder and White [3] provide an approximate analytical solution for the power flow 
of a beam connected to a panel along its length and excited by a point force. They observe 
that the poles of the mobility of the in-situ beam differ from those of the uncoupled beam. 
However, they find that power supplied to the in-situ beam can be estimated adequately 
using the mobility of the uncoupled beam. Their analysis is presented only for the case of 
a beam symmetrically coupled to two identical plates at its centroid, finite offsets being 
ignored. Torsion waves in the beam are treated in a similar manner, but there is no analysis 
of how the plate effects the other two beam wavefields: flexure in the plane of the plates 
and extensional waves. 

Langley and Heron [4] show that a complete wave mechanics treatment of line-con- 
nected plates will yield power transmission coefficients and the corresponding coupling 
loss factors of SEA. They stiffen the junction with a general beam, considering shear flex- 
ibility, rotatory inertia, and offsets. The beam is not an SEA subsystem; the beam's 
response is considered only in the calculation of the matrices of plate-to-plate power trans- 
mission. Furthermore, the beam is undamped, so only reactive forces—stiffness and 
mass—operate at the junction. 

In Langley and Heron, a diffuse vibration energy is assumed in the source plate, and 
power transmission characteristics are integrated over all incident angles. Each wave 
heading presents a different trace wavenumber to the beam at the junction. They show that 
total transmission (T = 1) occurs between two identical, aligned plates at trace wavenum- 
bers near the unconnected beam's free bending and torsion wavenumbers. They suggest 
that the maximum transmission occurs at the in-situ beam wavenumbers—that is, at the 
wavenumbers as modified by the plate(s) reactive loading of the beam. At this "in-situ" 
wavenumber, the beam impedance drops to zero, allowing un-attenuated transmission of 
vibration between identical plates. 

The only deficiency of the model is that it does not directly accommodate the case of 
a power source applied to the beam or the case where the beam transmits energy to other 
structures (Figure 2). 

Figure 2. The heavy arrow shows a possibly important path of power flow that is 
missing from Langley and Heron's analysis. 

One solution to this problem is to include the beam as a resonant subsystem in the 
SEA model. Then end-to-end transmission coefficients can accommodate axial flow of 
power along the beam. 
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STATISTICAL ENERGY ANALYSIS OF IN-SITU BEAMS 

3.0 In-Situ Wavenumbers 

Following the work of Langley and Heron [4], the line impedance ZB of the in-situ beam 

can be assembled from 

• the free beam 4x4 line impedance matrix Zb(kx) 

• the plate 4x4 line (edge) impedance matrix ZJkx) 

• a geometric offset transformation matrix R 

as follows: 

ZB(*Jt) = (z, + X^=1RZpRr) (1) 

The plate's impedances loads the beam wavefields and couple them together. The eigen- 
vector v of coupled wavefield velocities satisfies 

ZB(kx)y = 0 (2) 

Setting the determinant of the beam junction impedance matrix to zero yields a character- 
istic equation whose roots represent the in-situ beam wavenumbers 

det[ZB(*,)] = 0 (3) 

3.1 ILLUSTRATIVE EXAMPLE 

The interaction of the line impedances of the joined plates and beam controls the in-situ 
beam's free wavenumber. Here we consider the case of two 3mm-thick aluminium plates 
line-connected to a 25mm-by-10mm solid aluminium bar (Figure 3). 

500] 

Figure 3. Two plates symmetrically welded to a solid beam 

Without loss of generality, the location of the nominal line junction is taken to coin- 
cide with the centroid of the beam. The symmetric arrangement of the two plates leaves 
the two flexural wavefields uncoupled from each other and from the torsional and exten- 
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sional fields. The offsets of the edges of the plates from the junction (±12.5 mm) strongly 
influence the effective impedance of these plates and therefore must be considered. 

Anticipating future experimental work, we shall present results over the frequency 
range 500-2000 Hz. 

3.2 BEAM WEAK-AXIS BENDING LOADED BY PLATE BENDING 

A comparison of line impedances of undamped beam and plates can shed light on the 
interaction of these subsystems. Figure 4 compares the absolute values of one component 
of these two impedances: that of flexural displacement in z (out of the plane of the plates). 

Figure 4. Absolute values of uncoupled transverse line impedances presented to the 
junction: at 500hz (left); at 2,000hz (right); beam; plate 

The impedances of the two plates are combined and transformed to the centroid of the 
beam. The zero of the beam's impedance mark the free wavenumbers of the unconnected 
beam. The zero of the impedance of the two plates locate the free wavenumber of flexure 
in the plate—the trace wavenumber consistent with grazing waves in the plate and no out- 
ware radiation. 

At low wavenumbers (at both frequencies shown), the plate's flexural impedance is 
of the same order as the beam flexural impedance. Thus, the loading of the plate can be 
expected to exert an significant but not overwhelming influence on the beam's in-site free 
wavenumber. 

Figure 5 confirms this forecast. It follows the complex wavenumber of the beam at a 
fixed frequency of 500 Hz as the thickness of the two attached plates is increased from 
zero to the nominal 3mm in small steps. The transverse bending wavenumber of the in-situ 
beam increases slightly and becomes complex under the action of plate loading. An 
increase in the real part of wavenumber indicates that the plate's edge loading is mass-like. 
The finite imaginary part of the in-situ beam wavenumber indicates that some of the 
beam's energy radiates into the plate. 

The offsets plate edges from the nominal junction play do not affect this result. 
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Figure 5. Locus of transverse flexural wavenumber of the in-situ beam at 500Hz as the 
thickness of the attached plates is increased from zero to 3mm 

3.3 BEAM STRONG-AXIS BENDING LOADED BY PLATE EXTENSION 

Line impedances of the beam and combined plates for in-plane flexure (considering the x- 
component of displacement and normal traction) are compared in Figure 6, again in terms 
of their absolute values. 
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Figure 6. Absolute values of uncoupled in-plane line impedances presented to the 
junction; At SOOhz (left); At 2,000hz (right); beam; plate 

The plate's impedance is much greater than the beam's uncoupled in-plane bending 
impedance. In contrast to the out-of-plane component of impedance (see Figure 4), these 
impedances are of comparable magnitudes only very near the zero of the impedance of the 
plate. Owing to the coupling of extensional and shearing waves in the plates, the location 
of this zero is strongly affected by the offset of the edges from the junction. 

Figure 7 plots this ^-component of the plates' impedance versus frequency and 
(purely real) wavenumber. 
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Figure 7. Uncoupled in-plane impedance of plate plotted versus both frequency and 
wavenumber; Real part (left); Imaginary part (right) 

The sharp troughs shown in Figure 6 occur just to the right—at slightly higher wavenum- 
bers—than the crest of the ridge in the imaginary part (right plot) of Figure 7. 

Anticipating that the plates' stiffness will dominate the free wavenumber of in-plane 
flexure of the in-situ beam, we trace this complex wavenumber in Figure 8 as the stiffness 
of these plates is stiffened from zero to that of aluminium in small steps. 
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Figure 8. Locus of in-plane flexural wavenumbers of the in-situ beam at 500Hz as the 
plates' elastic modulus is increased. 

The very first point in the plot incorporates some added mass. At stiffness is increased 
from zero, radiation resistance forms and increases (increasingly negative imaginary part 
of wavenumber). The loop in the figure marks comparable wavespeeds of in-plane flexure 
of the uncoupled beam and in-plane waves of the plate. The primary affect of further 
increases in plate stiffness is added stiffness (lower real part). Finally, the in-plane bending 
wavenumber for the in-situ beam is greatly reduced by the extensional stiffness in the 
plate. 
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4.0 SEA Modeling 

We propose that the line-connected beam in a SEA model should be incorporated in two 
complementary ways, illustrated in Figure 9: 

1. as a finite beam subsystem with four resonant wavefield energies (the two flexural 
waves discussed above plus extension and torsion) defined by in-situ wavenumber and 
mass density, and 

2. as an infinite beam contributing line impedance to the junction between connected 
plate vibration wavefields. 

Figure 9. Both resonant and non-resonant behavior of beams in an SEA model 

This approach implies that a combination of two uncorrelated energies describe   the 
motion of the beam: 

1. the SEA subsystem's modal energy concentrated at the in-situ beam wavenumber, 
whose amplitude is controlled by the balance between any power applied directly to 
the beam and the combination of damping loss in the beam and power radiation (loss) 
through coupling loss factors to connected plate(s) 

2. a forced-response energy in the beam, driven by the incident plate waves over a whole 

spectrum of wavenumbers from zero to the cut-off wavenumbers ±k   of the plate. 

4.1 IN-SITU BEAM SUBSYSTEM PROPERTIES 

The real part kBr of the junction wavenumber can be used to define the in-situ beam free 

wavenumber. The modal density can be calculated from effective group velocity 

fäk. 
using  nB = L/[n[^   . 
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4.2 COUPLING LOSS FACTORS 

The imaginary part kBi ofeachofthein-situ beam's wavenumbers indicates that there is 

a radiation loss to the attached plate. In the proposed SEA model this is represented by a 
coupling loss factor between the beam subsystem and the plate. 
4.2.1 Beam to Plate 

Langley [6] has suggested that the coupling loss factor from the beam into the plates can 
be found by equating the in-situ beam's spatial rate of energy decay with the loss factor in 
a one-dimensional damped subsystem: 

-hi*    -imx/ic.) e       me * (4) 

It then follows that the total loss to the plates can be estimated for each in-situ wave- 
field as 

Ti = 2(d<ö/dkBr)kBi/(o (5) 

For the case where there are multiple plate wavefields participating at the junction, 
the coupling loss factor into each plate p can be apportioned according to the relative 
eigenvector-normalized power flows into each plate wavefield 

np = RfV| (6) 
as follows 

p   ' 

4.2.2 Plate-to-Beam 

The corresponding plate-to-beam coupling loss factor is most conveniently estimated 
from the reciprocity relation 

V = ("B^p^Bp (8) 
4.2.3 Plate-to-Plate Through an in-situ Beam 

Langley and Heron [4] provide a complete formulation for general plate-to-plate energy 
transmission, incorporating the in-line beam in the calculation of the junction's power 

transmission coefficient. The coefficient iy for each incident wavefield is calculated ver- 

sus the junction's trace wavenumber while assuming that the energy in the source plate is 
diffuse. Each coupling loss factor is calculated from the integral over all wavenumbers 
according to: 
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ty-sb^***-0** (9) 
Langley and Heron's formulation does not automatically include the damping in the 

beam. The beam presents a purely imaginary (reactive) impedance to the incident plate 
wavefields. Power is either transmitted to another plate or reflected; no power is diverted 
to the beam. If damping were included in the beam, then the power transmission co-effi- 

cient    Xfjico, <J>)  would never reach unity for any incident angle $. 

4.3 NUMERICAL EXAMPLE 

For the beam-plate assembly introduced in section 2, the energy transfer is evaluated and 
compared here the three different models illustrated in Figure 10: 

1. Langley & Heron's method [4] without beam damping 

2. Langley & Heron's method with beam damping of T| =0.10 

3. Three subsystem model with beam damping of 0.10 

In all cases the plate damping loss factor is 0.05. 

o, 
<\ *#. o       2 ;o 

3 3 

Figure 10. Models land2(left);Model3(right) 

In models 1 and 2, the two plate subsystems are directly connected. The beam is part 
of the junction. In model 2, a substantial loss factor of 0.1 is applied to the beam, simulat- 
ing longitudinal transport of energy down the beam as shown in Figure 2. In model 3, the 
beam is a conventional subsystem, again with a loss factor 0.1. 

Figure 11 compares predictions of the transfer function E3/E1—the ratio of energy 
in receiving plate 3 to driven plate 1—in dB for the three models. We may observe that 

1. The inclusion of damping in the beam in model 2 does not significantly change the 
results compared to model 1. 

2. The transfer function is smaller for the two-subsystem models (1 and 2) compared to 
the three-subsystem model—that is, more energy is predicted to reach the other plate 
when the beam is a separate SEA subsystem 

H 
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Figure 11. Normalized energy transfer functions E3/El (dB); Langley and 
Heron's method [4] with an undamped beam; [4] with beam damping r\=0.10; 

-. -. - resonant-beam subsystem with r\=0.10 

Figure 12 suggests an explanation of the modestly higher transfer function predicted 
using model 3. 
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Figure 12. Components of power transmitted to plate subsystem 3; total power 
 power from beam subsystem 2; -. -. - power from plate subsystem 1. 

About 15% of total power transmitted to subsystem 3 comes from the beam (sub- 
system 2). This additional path is strong enough to explain the 0.5 dB increase in transfer 
function shown in Figure 11. 
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5.0 Conclusions 

For the example studied, the inclusion of a resonant-beam subsystem contributes to the 
transfer of energy; model 3 predicts more transfer than models 1 and 2. Future experimen- 
tal results may show which model is best. 

The modest (though significant) difference between the three models is heartening, 
because the approach of Langley and Heron (model 1) has been validated, and because 
model 3 is more general, being able in principal to handle the energy flows in Figure 2. 
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A better design technique for controlling noise. 

• 

Noise is an important design issue for marine structure designers and builders.   Meeting 
regulations and clients' specifications for on-board noise is of growing concern. 

A survey has revealed that most designers and builders see the need for more 
sophisticated and reliable prediction and optimisation methods, to enable noise to be 
controlled to specific limits at the design stage and hence to comply with customers' 
specifications.   Better design techniques can also assist competitiveness by aiding low noise 
design. 

A Managed Programme of the Marine Technology Directorate, which is being coordinated 
by Marinetech South Ltd, is combining the resources of a £0.5M research programme 
(now in mid-term) with multi-sponsor industrial design projects in order to develop the 
application of Statistical Energy Analysis (SEA) techniques for design relating to marine 
craft and offshore installations. 

Statistical Energy Analysis (SEA) is a noise and vibration modelling technique introduced 
30 years ago, in particular to design spacecraft to resist damage from acoustically-induced 
vibration during the launch phase.   SEA has since been developed for broader application, 
particularly for the prediction of sound levels in road vehicles, aircraft and buildings.   Its 
advantage lies in rapid assessment of multiple noise paths. 

Commercial SEA applications packages are available and it is the aim of this study to 
develop and verify the particular aspects required to meet the needs of the marine 
industry.   The technique will assist the evaluation of new designs and reduce risk in 
remedial work situations. 

• The technique is complementary to Finite Element Analysis (FEA), already in widespread 
use for the dynamic analysis of structures and components.   In fact, the latest 
developments include combined approaches, with FEA assisting SEA modelling. 

• The application study is targeted at ships and offshore structures.   A typical structure will 
be selected for testing the research developments. 

• The intended project is costed at £65k over a period of 15 months. 

• Sponsors will have the opportunity of influencing the direction and emphasis of the study, 
at the project definition stage and throughout, and will receive early information on 
technical progress in this important area of design. 

• Proposed deliverables include design guidelines for aspects of SEA modelling particular to 
marine structure applications. 

If you are interested in knowing more about this programme, please contact: 

Neil Pinder, Programme Coordinator 
Marinetech South Ltd 
Tizard Building (ISVR) 
University of Southampton 
Highfield Tel: +44 (0)1703 593756 
Southampton SO 17 1BJ, UK Fax: +44 (0)1703 592728 

Ref: JNP / 5050 [leaflet.L12] 



ERRA TA: A NOTE ON CONSERVATIVE AND 
NON-CONSERVATIVE COUPLING 

Claes Fredö 
Ingemansson Technology AB 

Equation (2) should be renamed as equation (2a). Manipulating the upper and lower rows 
of equation (2a) to include the energy flow to subsystem 2 yields that 

lSPlA [      PP21 PP12 PPn 
Sp^ = (-PP31-PP21) (-PP32-PP12) (-PP13-PP23) 

Uft.J L      PP31 PP32 PP23 
(£M Si 

\ S2 HPP+l s2 , 
S3   I U3   ) 

(2b) 

The superscript + in the matrix [PP+] signifies that a row has been added. 

The 3rd sentence in the paragraph before equation (5) should read 
Equation (3) is similar (and in some situations identical) to the energy part of the "Greens 
function" formulation that Langley used in reference [4]. 

Equation (5) should read 

{Spi„,i\ 

'Spin,2)=[V] 

\Sp in,3 

■m+{pp+})issl j 
1 *31 

(5) 

Summing the [U] and [PP+] matrices for the dissipated power and the energy flow out of 
the subsystems, respectively yields the diagonal [V] matrix for the power input 

The 1st sentence in the paragraph before equation (.15) should read 
The experience from the discussion above is that one should be cautious to take the 
benefits of the uncoupled subsystem energy for granted also for coupled subsystem 
energy. 

Equation (17) should read 

^•i->L 
Sp'i 

PPll PP\3 
PPj,\ PP23 

Si] 

S3. 
=[pp Si 

S3 
(17) 

Addendum 
The power input for the non-conservatively coupled case can be divided into the 
following subparts 

where the power which is lost in the non-conservative junction is 

\SF1.JJU21     0 
l^3->(   L   0    U23 

and the power which is lost in the subsystem is 

(Spliss, 1]   rr/,,   TU , 1 (sx \   tjj,,-\ J S\ \ 

B;)-M{£ 

\Sp diss, 3 LC/31 
U13 
U33\ 

(19b) 

(19c) 

(19d) 

Re-expressing equation (19c) as a function of coupled subsystem energy yields four 
radiation factors. Re-expressing equation (19d) as a function of coupled subsystem 
energy yields two dissipation loss factors on the matrix diagonal. 
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Abstract 

The transmission of energy between two coupled plates has been extensively 
discussed in the literature of structural dynamics. In most of these studies it is assumed 
that the plates are rigidly joined and that no energy dissipation occurs at the joint, i.e., 
conservative coupling. In most practical cases, however, the plate elements forming a 
complex, built-up structure are joined together by welding or fasteners which give rise 
to energy dissipation in the joints via various forms of friction and damping. 

Previous SEA based studies of the transmission of energy through dissipative 
joints, modelled by springs and viscous dampers, have shown that the effects of dissi- 
pation in such joints can give rise to significant changes in the various quantities used 
in SEA, and in particular to the coupling loss factors used by the method. In this work, 
the transmission of energy through a compliant and dissipative joint between two 
plates forming an 'U-shape is investigated, using a receptance approach. The two 
plates are assumed to be thin, homogeneous and isotropic. Their common edge is 
taken to be simply supported so that the joint has relative motions only in its rotational 
degree of freedom, i.e., translation normal to the plate at the common edge is not per- 
mitted. The joint is then assumed to have a constant complex stiffness per unit length, 
denoted by K +iaxy (Nm per m radian). Exact formulae for the spectral densities of the 
energy flow through the joint, the energy dissipated at the joint and the power input 
into the plates are established for the case of excitation by random ergodic forcing. 

The aim of this study is to examine the effects of the joint damping and compli- 
ance on the magnitudes of the energy flows through the joint and the energy levels in 
the two plates. Interest is focused on the power dissipated at the joint and the condi- 
tions under which this quantity is maximised. The coupling and coupling damping loss 
factors that would be used in an SEA model of this problem are also derived, using the 
power injection method. These are compared to the results obtained from using a wave 
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based approach with semi-infinite subsystem models. 

1. Introduction 

In this work, energy flow between two thin rectangular plates which are coupled 
together by compliant and dissipative joints is considered. This topic is one on which 
little attention seems to have been focused in the literature. The method adopted for 
the analysis is based on a receptance approach as used in previous works by Dimi- 
triadis and Piercefl] to gain an exact solution for the energy flow between two coupled 
plates, by Fredo[2] for the analysis of energy flows in three thin rectangular plates con- 
nected along two simply supported joints and by Kim et al.[3] for a general situation 
such that there are no limitations on the number of connected plates or the junction 
type. However, these studies have been mainly concerned with rigid or conservative 
joints. The work presented here addresses the less familiar case of compliant and non- 
conservative coupling[4]. Exact solutions for the spectral densities of the energy flows 
and energy levels are found. These results are utilised to derive the coupling and cou- 
pling damping loss factors used in SEA studies, by ensemble averaging of the various 
energy receptances. They are compared to those given by the wave approach for a 
model of two semi-infinite plates. 

2. Theory 

Consider two simply supported plates coupled together along a compliant and 
dissipative joint as shown in Figure 1. The plates are assumed to be thin, isotropic and 
homogeneous so that the classical thin plates theory holds. Each plate n has thickness 
h„, mass per unit area pSn, viscous damping coefficient c„ and bending rigidity D„. The 
dimensions of plate n are LXn and 1^ and the mode shapes are denoted by *P„i(;t) and 
<&BJ(y). The joint is assumed to have a constant complex rotational stiffness 
Q=K+iyco, per unit of length. In this case, the coupling moment which acts on the first 
plate can be written in terms of the mode shapes of both plates as 

-*i—r 

'<---- joint of stiffness Cl per unit length 

Figure I. Two simply supported plates coupled together along a boundary to form a» 'L'-shape. 
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Wc,(y,o»)=Q2[e2J(0,0))*2j(y)-©ij(0,a))*1j(y)]6(x1-0) . (1) 
;' 

The coupling moment on the second plate acts only on a length Lyi of its edge and is 
given by 

Me2(y)(o)=nX[0ij(o.w)*i,;(y)-02J(O,to)*2,;(y)]U(y-Z^1)8'(x2-O)        (2) 

j 

where U(y-yj) is the unit step function acting at y=yi. Using modal analysis, the 
rotation at the coupled edge of plate one due to the coupling moment distributed along 
its edge is given by 

6ei (0,y, a»=X<?i j69(0,0,a» *, ,,(y) Q [-f- £e2,*(0,co) q i jr-G, j(0,o»]      (3) 
; h\    k 

and the rotation at the edge of plate two due to the coupling moment can be written 
similarly as follows 

ec2(0,y,oo)=£G2Jee(0,0,co)<&2;.(y)ft -^-[£©u(0,a>)«7U,-02ii(O,a» q2Jk] (4) 
j hi    k 

where 

q\,ik= J*ij0')*2,i(y)dy    ,   g2,;*= J *2,;(y)*2,*(y)dy • (5-6) 
0 0 

Here G^Oc,*0,©) is the Green function which gives the /th component of rotation at 
point x of plate n, denoted by 0„ J(JC, to), due to unit j'th component of a modal expan- 
sion along the y axis of moment M„j(x, oo) applied at point x°, and is given by 

where WBiy((ö)=to^y-a)2+icna) and (a„jj is the natural frequency of mode ij of plate n. 
The compatibility conditions are next satisfied at the coupled edge, which require that 
the total rotation be equal to the rotation due to the external forcing plus the rotation 
due to the coupling moments, i.e., 

SeIJ(a<D)*w(y)=£e?j(Ola))*,j(y) 
j J 

+EGi,;99(O,O,(O)n[-^-2^ijJi02,*(O,to)-0w(O,G»]*w(y)  , (8) 
j h\   k 

Z®xj(o,(ß)<ff2.j(y)=Ißij(o,(äyt>2j(y) 
j j 

+2G2Je6(O'O'O»ß-r"G?l,*;0l.t(O.tO)-?2t;te2,t(O,ö))]<&2j(y)   . (9) 
/ hi    k 

These last two equations may be reduced to 
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0, /O,w)=0?,;(O,co)+GU9e(O,O,ö))Q [y- ^qlJk 02,t(O,(D) - ©,.,(0,a»],   (i0-a) 
h\    k 

02.;(O,(ö)=0£/O,©)+G2JM(O,O,<ö)Q — [£ q\,kj eu(0,(0) -q%ik 02,t(O,CD)] .(10-b) 
hi     k 

As may be seen from the above equations, the coupling moment couples the modes in 
the y direction of both plates, so that each mode j of plate one interacts with all the 
modes in the y direction of plate two. Equations (10) represent an infinite set of cou- 
pled algebraic equations and therefore approximate solutions must be explored for a 
finite number of resonant modes n in the y direction for both plates, and so, the infinite 
set of equations (10) is transformed to two finite nxn sets of algebraic equations which 
can be written as follows 

{0,(O,(D)}={0?(O,co)}-n[G1] {0,(0,0))}--^- fo,]{02(O,co)} 
hi 

{02(O,(O)}={0§(O,(O)}--±- n [G2] 
hi 

[92]{02(O,(ü)}-[?I]
T{0,(O,(O)} 

where 

{01(O,(O)}= 

©i,i(0,co) 
©1,2(0,0» 

©i,n(0,co) 

and      {02(O,(ö)}= 

02,i(O,co)' 
©2,2(0,0)) 

©2,„(0,o>) 

(H-a) 

,(ll-b) 

(12,13) 

[Gi] is a diagonal matrix nxn which has the elements GijM(0,0,0)) on its diagonal, 
[G2] is defined similarly. [q\\ is matrix of dimensions nxn which has q\$ on the ith 
line and j'th column. [q2] is defined similarly. Solving the two sets of algebraic equa- 
tions together gives expressions for the modal rotations at the coupled edge in terms of 
the modal rotations at the edge due to external forcing alone. If the following notation 
is introduced 

[ß„]=[/]+n[G,] [Q22]=U)+T^n[G2][q2] 
hi 

[ßl2]=-T-ß[Gi]foi] -        [Ö2i]=-T-ß[G2][<7i]T 

h\ hi 

then the solution of the previous equations can be written as follows 

{0,(O,(ö)}=[[ßnHßi2][ß22r1[ß2.]r,{0?(O,Cü)} 

+[[ß2iHß22Kßi2r1[ßn]r1{0§(o,o))} , 

{©^o.o^MtßuHßiiHß^r'ißMirMefto.co)} 

(14,15) 

(16,17) 

(18-a) 
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+[[ß22Hß2i][ßnr1[ßi2]r1{®2(o,to)} 

For convenience, these last two equations are written as follows 

(9,(0,0))} 
{©2(0,0»} [X21] [X22] 

{e?(0,o»} 
{95(0,0»} 

(18-b) 

(19) 

It is obvious that the modal rotation {0jj(O,a>)} is dependent on all the modal rota- 
tions {0°;(O,CO)} through the elements of the matrices fa)] and [q2]. When the mode 
shapes in the v direction are identical then the matrices [q^] and [q2] become diagonal 
and the previous equations are then decoupled. In this case the modal rotation 
{0„j(O,ü»} depends only on the characteristics of mode j of both plates while the 
other modes have no effect. Hence, 

(l+nG2,;w(0,0,o»)^n 00^,(0,0,0)) 
8ij(o.«)= r^ 0i.;(o,o»+  

02,,(O,o»= 

A;(0» 

QG2,JW(0,0,a» 

A,(o» 
0?,;(O,O» + 

A;(0» 

(l+nG1J((9(0,0,a») 

A/o» 

0^(0,0)),   (20-a) 

0§,y(O,co), (20-b) 

where A/o»=l+fl (G,jM(0,0,O))+G2je9(0,0,0))). 

3. Energy Flow, Energy Dissipation at the Joint and Input Power 

The spectral density of the energy flow is given by 

n'i2(o»= J iQcoSe)ej (y, o))dy + J •yotoe.e, <* ^ (21) 

0 0 

where the rotations at the edge 8i(y,a>) and 02(y,(o) are given by {©i(0,o»}T{<I>i,;(y)} 
and {©2(0,(0)}T{*2j(y)}, respectively. Substituting in the expression for the energy 
flow gives 

n'12(o»=incölim -v[{0i(O,ü»}T[<7, ]{©2(0,ü))}] 
r-x» T 

+YC0%1/2 lim^-[{©:(O,o»}T{01(O,o»}]  . (22) 

Assuming that the forces acting on both plates are incoherent so that S 9^0^=0, the 
expression for the energy flow becomes 

n'12(co)=Re{iQG>{2;Z[[Xii ]T[q, ][X21 ])jk Se<{Mk + ££[[X;2 1' fo 1 KM,* SelM, > 

+70>%1/2{2:B^n]T^n]]it5e?Je?, +IZ,[[Xn]T[Xn]]jkSeilelk}}  ■  (23) 
j  k j   k 

As noted above, the effect of each mode in the y direction on each plate is not separ- 
able from the effects of the other modes. The energy flow from plate two to plate one 
is similarly given by the expression 
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n21 (a»=Re{ina>{22;[[X2i lTfoi JT[*n N* 5e?,e?» + IE«** lTfoi ft*«]]* 5e^e§t} 
j k j k 

+Ya>2{IB[*2iy^2]lX2i]]jkStfjh + JSaXnYlqiMXn]]^SeW*>>  -(24) 
j  k j  k 

For the case of two plates which have the same width, the previous equations are 
simplified considerably. The energy flow from plate one to plate two can then be writ- 
ten as an infinite sum over the modes in the y direction as 

n'12((0)=2:(iß to L/l Se^fr) + yco2 V2 ■Se.je,/»)) = £ n'I2j«o)     (25) 

where the jth component of the energy flow is 

a 02,^(0,0,(0)+1Q G2,,M (0,0,03) 12 

n'i2,y((0)=iß 0) L/2 
IA/oo)l 

"^e?je?j(«) 

n'GWw(o,o,(o)+inGlt^(o,o,(o)i; 

IA,-((D)I! ■SeSjeS/to) 

+ya2 L/2 
ll+flG2ijM(0,0,co)l: 

1 Ay(Q>) I 
Se?,e?,(a»+- 

IQGU86(0,0,co)ls 

I Ay(0>) 12 
-5eiM;(co) •(26) 

The spectral density of the modal rotation of plate n along the common edge is written 
in terms of the spectral density of the modal forces as follows 

y;.,(Q)y;t(Q) 
eSÄ ff (A/n/4)2<iy(a)W„,t/a>) ^F"*(<0; 

so that the expression for the energy flow becomes 

n'12j(a»= 
-ooifli2y2 

IA,(o>)l2 Im 
*2fr(0) 

' p,2 LXl/2 tf 2,r;(C0) 

n=l,2 

yro2L/2 

14,(00)1 

(27) 

(28) 

xff(A/I/4)2Hr,y((o)//1,t/a)) F,*F,*ca>) 

y|3(Q) 
f pslLXl/2//M;(co) 

%A0)%.m(0) yy 
r„(M2/4)2Ä2,r;(tü)//2,m;(ü)) 

'SFu,F^(fO)   ■ + ^-Im 
IA/eo)l2 

The expression for the energy flow from plate two to plate one is derived similarly. 
Lastly, the energy dissipated at the joint can be recovered from the energy balance at 
the joint. It is given by nTC(co)=]£nDC,7(o)) where IIrx:j(ö>) is the sum of Yl[2j(v>) 

. J 
and n2i,j(co) and is given by 
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7CQ2V2 y;,(0)yu(0) 
n^(t0)= IA,«0)l> ??(M1/4)^r,,(«»Hu,«o)5f-F-(<D) 

yqp-L/1 
XX 

^^(O^^mCO) 
I A/©) 12 T m (M2/4)2Hirj((i»HXmj(a» Vw(ffl) (29) 

The spectral density of the input power due to a vertical force applied to plate 
one is calculated from the product of force and velocity at the point of its application 
and is given by 

niN,(co)=-iQ)lim^-1 K(xi,y,w)/i(xi,y,CD)<k,dy 

2% 
^iffilim^rXZ^i.vCw^i,,;«»)) . (30) 

Substituting Vi,,;/(a>) by its value in terms of the modal forcing components and 
assuming mat the forces acting on the two plates are incoherent, i.e., SFlkjFuj((ii)=0, 
the input power to plate 1 is given by 

nWl (<»)=■ 
CO 

Af,/4 X2> 
' J 

1 
SF^M 

CO 

(Mj/4)' 
-xx 

< j 
XXXIm 

k   r m 
X 

#ü,(to) 

yj.,(0)y;,m(Q)Q 
21, *r 

MlJ^F.VM.^XX^1111 l
ll,J> 

/fi,y(co)/flimr(a>) 

<yi,,(0)y1,w(Q)Q 
HUj((0)Hi,mr((0) *Fi,mrFl,il «a) (31) 

For the special case when the plates have the same width, the expression for the spec- 
tral density of the input power to the first plate is written as 

11^,(00)= 
CO 

M,/4 
1 

/*U,(G» 
XXhn 

'" j 

As?* ¥u(0)y;,w(0)fl 
HUij(.(o)Hhmj(u)£Lj(<a) 

SF^FUJ«O).     (32) 

The expression for the input power to plate two can be derived similarly. 

For the case of modally incoherent forcing, the spectral density of the driving 
forces is given by 5/ii/(i(co,^,xll,y,y)=4SFiifii(a))8(x),-x(,)8(y-yyAn and the spectral 
density of the modal forces is then SFiUjFnJ:j(G!i)=SFnFii((ßi)$ik. The spectral densities of 
the energy flows, energy dissipation at the joint and input power due to external forc- 
ing can then be recovered when these expressions for the modal forcing spectral densi- 
ties are substituted in the equations above. 
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4. Determination of Coupling and Coupling Damping Loss Factors for two Cou- 
pled Plates 

In the previous sections, exact expressions for the various energy receptances for 
the case of two nonconservatively coupled plates have been derived. Assuming that 
deterministic knowledge of the plates is not available, their characteristics can only be 
described probabilistically. All energy receptances are then expressed as ensemble 
averages, which are taken across a supposedly infinite set of grossly similar systems, 
in which the individual members differ in some unpredictable detail. Thus, the ensem- 
ble averages of the input power, energy leaving one plate and energy dissipated inter- 
nally and in the coupling damping are written as follows (assuming linear systems and 
independent ergodic random forcing and where ensemble averages are denoted by E[]), 

EEHN, (0))] = E[HWi (CO)] SFlFl (co) , E[nDISSl (co)] =c,E[E, (co)],    (33,34) 

E[n',2(co)] = E[tf12(co)] SFlFl (co) + EtffDcl(„,]5FlFl (co) - E[ H2] (co)] SFlFl (co), (35) 

E[nDc(co)] = ELZ/DC, (co)] SF,F, (co) + E[ffDC,(co)] SFlF2(co). (36) 

The energy balance equation for subsystem one may be written as 

EtÜN, (co)] - E[nDlsSl (co)] - E[n'12(co)] =0, 

and similarly for subsystem two with that for the damper as 

E[n'12(co)] + E[n'2,(co)] =E[nDc(co)]. 

Rearranging these equations (for white noise forcing) leads to the following equations, 
which are similar in structure to the traditional SEA equations, 

E[n'12(co)] = cor|12 E[E!(co)] - con21 E[E2(co)]+ co;12E[£,(co)] 

and 

E[nDc(co)] = coC,2 E[£,(co)] + coC21E[£2(co)] 

where 

m\l2 = CiE[Hn((0)]E[HJNi((ü)yD   , (41) 

(37) 

(38) 

(39) 

(40) 

0)^12= 
C\ 

(E[tf N, (CO)] - E[ H2X (CO)] - E[ff DC2 (CO)]) E[ff „<;, (CO)] 

and 

-Etff^coHEf/Wco)] (42) 

D = (Et/Zm, (co)] -E[tfDCl (co)]) ^[//^(co)] - E[//DC2(CO)]) 
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- E[ //12(C0)] (E[//IN2(CO)] - E[ffDC(<D)]) 

- E[ H2, (co)] <E[ff Wl (co)] - E[ffDC (co)]) (43) 

and again the expressions for subsystem two, rj2i and £2] are similar. x\n is the cou- 
pling loss factor which relates the energy transferred to plate 2 to the energy level of 
plate 1. T\2i is denned similarly. £t2 and £2! are called the coupling damping loss fac- 
tors and relate the energy dissipated in the coupling element to the energy levels of 
both plates. Hence, the CLF and CDLF are given in terms of the ensemble averages of 
the energy receptances which should be taken for the case of rain-on-the-roof driving 
to be consistent with the conventional assumptions of SEA. Note that the CLF and 
CDLF are both dependent on coupling damping. 

TABLE 1. Parameters used in the examples 
Parameter Plate 1 Plate 2 Units 

Mass density (p^) 78.00 78.00 kg/m2 

Length (Lx) 1.200 0.80 m 
width (Ly) 1.0 1.0 m 
Rigidity(D) 1.923x10* 1.923X104 Nm 
Damping strength (c) 10 10 s"1 

5. Numerical Examples 

Consider two simply supported plates coupled together where the first plate is 
driven by a rain-on-the-roof forcing. The properties of the two plates are given in 
Table (1). Interest is focused on the ratios of the energy dissipated in the joint and in 
plates one and two to the power input by the external forcing, denoted by Rj, Ri and 
R2, respectively. To begin with, the spring stiffness is given one of the values 104 N (= 
Nm/rad/m), 106 N and 108 N, respectively, while the damper strength is increased. 
The ratios Rj, Ri and R2 are plotted in Figure 2. For the case of the weak spring, it is 
seen that when the damper strength is weak, most of the input power is dissipated in 
the first plate, while the energy transferred through, and dissipated in, the coupling 
damper are at minimum levels. As the damper strength increases, the energy dissi- 
pated in plate 1 drops until it reaches a minimum level for moderate coupling strength. 
The energy dissipated in plate 2 on the other hand increases as the coupling strength 
increases, as does the energy dissipated in the damper. It is seen that in this case the 
bulk of the input power is dissipated in the coupling damper with only a small percen- 
tage of the input power dissipated in plates 1 and 2. When the damper strength 
increases further, the ratio R^ decreases as the damper becomes blocked while, on the 
other hand, Rj and R2 increase again to reach constant levels for the limit of a rigid 
joint. When the three ratios Rj, Rj and R2 are plotted for the case of the stiff spring of 
stiffness 108 N, it is noticed that the ratio R,j has the same pattern of behaviour as 
before and reaches a maximum at Ye=K»/eo but it is seen that this ratio is very small for 
all values of the damper strength, as might be expected since the damper is essentially 
always blocked by the very stiff spring. It follows that the power input is dissipated 
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mostly in the plates. In this case, the ratios Rj and R2 remain at nearly constant levels 
for all values of the damper strength, which represent the limit for a rigid joint. 

6. Comparison with the Wave Approach 

The coupling loss factors (CLF) used in SEA analyses can also be obtained 
based on a wave approach where the wave transmission and reflection coefficients 
across junctions of semi-infinite systems are used to indirectly evaluate the CLF. Fol- 
lowing the traditional wave approach, see Lyon[5], the coupling loss factor (when the 
joint is dissipative) may be given by 

*?       1,2(9,0))^, LsinG 
Ti,,(co)=2^t J ——— d9 (44) nnK(a) "*{ (aA1(2-T12(e,to)-t)12(eito) 

where cg is the bending wave speed, A is the plate area and L is the length of the junc- 
tion. Ti2(8,fi)) and o)12(0,(ü) are the infinite wave transmission and dissipation 
coefficients which are functions of the wave heading angle at the junction, denoted by 
6. In order to obtain the values of the CLF, T12(0,CD) and V]2(0,<D) are first determined 
for a model of two semi-infinite plates with compliant joint following a similar 
approach to Langely and Heron[6] and the coupling loss factors are then obtained 
using the equation above. 

For the case of nonconservative coupling, formulae for the coupling damping 
loss factors can be developed using the same method adopted for the CLF. These may 
be shown to be related to the infinite system dissipation and transmission coefficients 
by the expression 

n/l •o12(0,oo)cglLsin0 

CM 

T3 

O)=2/TC J 
o «A 1(2-T12(0,CO)-D12(0,(O) 

de . 

>y        - ^ 
■ 

"*--'/ 

10° 10! 

Y'0' 
10* 10 

z^**0^ 
^^ ■ 

10° 10* 
Y,0< 10* 10 

--.. """ 

(45) 

. 10* 

Figure 2. Variation in R], R2 and R,, with ye for (0=10000 rad/sec for the case of two simply supported plates 
coupled through rotation; (—), K„=lxl04 N; ( ), K«=lxl06 N and (-.-), K8=lxl08 N. 
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Figures 3 and 4 show the values of r\n and C12 obtained by the wave approach com- 
pared with the results based on the deterministic analysis where arithmetic frequency 
averages are taken over a bandwidth of 300 Hertz. Plots are given for the case of low 
modal overlap factor (MOF) (which is associated with the example discussed above) 
and for MOF larger than unity (which is achieved by increasing the dimensions of both 
plates). Here the spring strength is taken to be weak while the damper strength is 
chosen so that the energy dissipation at the coupling is significant. It is noted that the 
results given by both methods are in agreement for large MOF, as expected, and that 
£12 has significant values compared to T\n- The results are also in broad agreement for 
low MOF although the wave analysis fails to reveal much of the detail present in the 
modal approach. 

7. Conclusions 
A receptance approach has been presented for the analysis of energy flows and 

energy levels in thin rectangular plates coupled together by compliant and dissipative 
joints to form an 'L'-shape. It is shown that joint damping is most effective when the 
coupling is in the transitional region between weak and strong and that for strong cou- 
pling regimes, the nonconservative nature of the joint may be ignored with little error. 
The coupling and coupling damping loss factors used in SEA studies are also derived 
in terms of ensemble averages of the energy receptances and compared to those 
derived using a traditional wave approach. Reasonable agreement is obtained but 
some detail is lost when using the wave approach. 

10 

3000 3400  „ 3600 
(0 

3800 

Figure 3. r\n calculated using the deterministic analysis and compared with the results of the wave 

approach for the case of two nonconservatively coupled plates; (—), T)t2 from equation (41) for modal 

overlap greater than one; ( ), Tin from equation (41) for modal overlap much less than one; (-.-.-), T^ 

from equation (44) for modal overlap greater than one; (...) T|IJ from equation (44) for modal overlap much 

less than one. 



12 M. BESHARA and A.J. KEANE 

10 

io-  , •           \ 
cs / / V_ 

vj> 

io- • 

-4 

3400     „ J600 
CO 

Figure 4. C,n calculated using the deterministic analysis and compared with the results of the wave approach 
for the case of two nonconservatively coupled plates; (—), £M from equation (42) for modal overlap 
greater than one; ( ), £]2 from equation (42) for modal overlap much less than one; (-.-.-), £K from 
equation (45) for modal overlap greater than one (...) £12 from equation (45) for modal overlap much less 

than one. 
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Abstract 

The research reported in this paper studies the coupling between regular, rectangular 
plates and irregular, five-sided plates separated by a beam. Both experimental and 
analytical results are reported. The coupling between irregular plates is found to follow 
the conventional SEA modeling procedure with a single subsystem representing the 
bending modes of each plate. The coupling between regular plates, however, requires a 
different modeling procedure, with the bending modes of each plate divided into 
subgroups according to wavenumber matching along the boundaries of the connection. 
The significance of this result for SEA modeling of realistic structures is studied by 
including the effect of irregular boundary impedances on the SEA modeling. Finite 
element results are used to show that irregular boundary impedances can have the same 
effect as irregular shapes, so that use of the conventional SEA modeling procedure may 
be acceptable for regular, rectangular plates in realistic systems such as vehicles, 
aircraft, and other products. 

1. Introduction 

There is a tendency in vibration and acoustic analysis to look for "exact" solutions. 
It is assumed that the response of a system can be predicted exactly as long as the 
parameters defining the system are specified exactly. Finite element and boundary 
element analyses are well known examples of deterministic prediction procedures in 
which greater accuracy is achieved by improving the accuracy of the model description. 

Uncertainties in response prediction due to random excitation forces and 
manufacturing tolerances are accepted, but without enthusiasm. Randomness is 
associated with a lack of precision, since we can no longer predict the exact response at 
a single point in time and space. As scientists and engineers we hesitate to regard 
uncertainty and lack of precision as beneficial effects. However, randomness can bring 
about simplifications in the analysis, which we must regard favorably since a simplified 
analysis helps to reduce analysis time and cost. 
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Statistical analysis procedures allow predictions of the average response to be made 
in terms of average properties of the system being studied. Using these procedures we 
no longer look for "exact" solutions and therefore we no longer need to describe the 
system properties exactly. Of course, when we use a statistical analysis, we must accept 
a prediction that agrees with measured data only in an average sense. 

Statistical energy analysis has become an accepted statistical analysis procedure for 
structural-acoustic problems [Manning 1997]. SEA takes advantage of the inherent 
randomness in these systems and allows predictions of the average response to be made 
using only average system properties. The simplicity of SEA is its strongest feature. 

In nearly all SEA predictions the mean response is predicted. The variance of the 
response and other higher order statistics of the response are not considered. Therefore, 
it is difficult, if not impossible, to assess the accuracy of a SEA model based on a 
comparison between a prediction of the mean and measured data from one member of 
the ensemble of systems being considered. Thus, questions continue to arise about the 
reliability of the SEA predictions. When combined with measured data to validate the 
model predictions, SEA provides a useful technique to identify noise and vibration 
transmission paths and to study the sensitivity of system response on parameter 
variations. When no data are available to validate the prediction model, the reliability of 
the SEA prediction depends on the skill and experience of the analyst and the extent to 
which the response of the individual member of the ensemble of systems equals the 
ensemble average. 

Due to the growing popularity of SEA there is significant work underway to 
quantify the assumptions made in SEA. Questions regarding the minimum number of 
subsystem modes, light coupling approximations, and the effect of low modal overlap 
are common. However, the statistical nature of SEA is often forgotten and the validity 
of the procedure is assessed by comparison with predictions or measurements on 
idealized, deterministic systems that are not statistical. When using SEA, more attention 
needs to be given to identify (at least qualitatively) the ensemble of random systems 
being considered. 

2. SEA Assumptions 

Statistical Energy Analysis requires that the system being modeled be divided into 
subsystems as described in Lyon and DeJong (1995). Each subsystem represents a 
group of modes, and it is assumed that each mode in the group has the same energy - at 
least within the statistical concept of the average energy over an ensemble of systems. 
For this equipartition of energy to occur, the modes in a subsystem should have similar 
excitation, damping, and coupling to other subsystems. 

Subsystem divisions are generally made at the boundaries of physical substructures, 
so that the SEA model can be represented by a set of coupled plates, shells, beams, and 
acoustic spaces. Often only the bending modes of each substructure are considered. In 
more advanced models, both bending and inplane compression and shear modes are 
considered. The bending and inplane modes are placed in separate subsystems to satisfy 
the assumption of equipartition of energy within a subsystem. 
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SEA coupling factors are then calculated using asymptotic modal densities and 
impedances of infinite and semi-infinite systems. The shape of the substructures used in 
the model does not enter into these calculations, so that the distinction between 
regularly-shaped and irregularly-shaped structures is lost. The ensemble of systems 
consists of plates with equal area but different shapes. 

Many of the early studies of SEA used irregular plates with no two boundaries 
parallel, e.g. Lyon and Eichler (1964). The irregular plate represented one member of 
an ensemble of plates with random shapes and boundary conditions, although the 
ensemble was not explicitly defined. In these early studies it was assumed that the 
irregular plate was a better representative of actual structures used in vehicles, aircraft, 
and other products. This assumption is often valid, but when it is not, predictions 
obtained using SEA may become unreliable. 

Measurements on rectangular plates with idealized free, clamped, or simply- 
supported boundary conditions show significant deviations from the ensemble mean 
predicted by SEA. This deviation is due to the regular nature and symmetry of the 
rectangular plate. Measurements on irregular plates are found to be in better agreement 
with the SEA mean. Since the irregular plate does not always provide a good 
representation of a system, improvements in SEA modeling procedures for rectangular 
plates with idealized boundary conditions are needed. 

2.1. SEA FIELD APPROXIMATIONS 

In SEA reverberant and diffuse field approximations are often made to simplify the 
analysis of complex systems [Lyon and Maidanik 1962]. It is important, before 
developing a modeling procedure for regular and irregular structures and acoustic 
spaces, to discuss the meaning of these terms and the influence of structural irregularity 
on the validity of these approximations. 

2.1.1. Direct and Reverberant Fields 
In room acoustics, the sound field is commonly divided into a direct and reverberant 
field. The direct field is represented by sound waves emanating directly from a source 
before they have reflected from the walls of the room, as shown in Figure 1. The 
reverberant field is represented by waves that have reflected one or more times from the 
walls and other reflecting surfaces. 

Figure 1. Direct and reverberant field representations 
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The relative importance of the direct and reverberant fields depends on the absorption 
within the room. In a room with low wall absorption, sound waves emanating from a 
source will propagate throughout the room reflecting many times from walls and other 
surfaces with little or no reduction in amplitude. In this case the reverberant field will 
dominate the overall acoustic field. For high absorption, the amplitude of the reflected 
waves will be significantly reduced at each reflection so that the direct field dominates. 

The concept of direct and reverberant fields can be extended to structural 
vibrations. For example, in a lightly damped plate, the bending waves emanating from a 
point force excitation will propagate across the plate reflecting many times from the 
plate boundaries. The amplitude of these waves will decay slowly as the wave travels 
along the plate due to distributed damping mechanisms and on reflection due to damping 
or energy transmission at the edge of the plate. As in room acoustics, direct and 
reverberant fields can be defined. However, the fields may be more complex, since both 
bending and in-plane compression and shear waves exist. 

Although studies of room acoustics are often based on wave descriptions of the 
direct and reverberant fields, a modal description can also be used to describe the field. 
The sound pressure in the room is described as a sum of modal responses as shown by 
Morse (1948). The reverberant field in a given band of frequencies is represented by the 
resonant response of modes with resonance frequencies within the band. 

Description of the direct acoustic field is also possible using a summation of modal 
responses. However, such a description is much more complicated since a large number 
of modes must be included in the summation and the phase of the different modal 
responses must be correctly determined. Even with low damping, the direct field 
response in a given band of frequencies must take into account the response of modes 
with resonance frequencies both within and outside of the band. 

In SEA, the subsystem damping is assumed to be sufficiently low that the response 
is dominated by the reverberant field. The direct field response is typically ignored. 
Thus, in cases where the direct field does play a significant role in the response 
calculation, the SEA formulation should be modified to include the direct field. 
Fortunately, this is a fairly simple procedure within the context of a statistical model of 
the subsystem as shown by Maidanik (1981). 

2.1.2. Directive and Diffuse Fields 
In a diffuse acoustic field, sound waves are incident from all directions with equal and 
uncorrelated amplitudes. The reverberant field in a large room with low wall absorption 
and irregular boundaries will become asymptotically diffuse at higher frequencies as 
more and more modes contribute to the response. 

In a rectangular room with rigid boundaries, the acoustic modes can be easily 
determined. Each mode can then be represented by a sum of eight traveling waves (one- 
dimensional and two-dimensional modes required fewer waves). The direction of travel 
is given by the wavenumber vector for the mode. Different modes will have different 
wavenumbers and different travel directions. At low frequencies, only a few modes 
contribute to the response so that only a few travel directions are involved in describing 
the response. At these low frequencies the field is not diffuse. However, at high 
frequencies, hundreds of modes will contribute to the response so that hundreds of travel 
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directions are involved. The use of a diffuse field at these high frequencies is a good 
approximation to the actual field. 

The introduction of the statistical theory of room acoustics more than 50 years ago, 
e.g. Morse (1948), allows analysts to quantify the accuracy associated with the use of 
the diffuse field approximation for high frequency acoustic analysis. At low 
frequencies, where only a few modes contribute to the response, a deterministic analysis 
can be performed to identify the modes of a room and the response of each mode to a 
prescribed excitation. Acoustic finite element analysis and boundary element analysis 
allows this deterministic analysis to be carried out with great precision. At high 
frequencies, on the other hand, many hundreds of modes contribute to the room 
response. At these frequencies, the deterministic analysis of a room becomes too 
cumbersome and the implied accuracy of the predictions misleading since the analysis 
can't take into account the many small details of the room that influence the response. A 
statistical analysis becomes more useful. "The situation is analogous to the difference 
between the methods of statistical mechanics, which deal with the average behavior of a 
large number of bodies, and those of ordinary mechanics, which deal with the detailed 
motions of one or two bodies." [Morse, p. 383] 

If a statistical description of a room is used, diffuse fields can be used to obtain 
predictions of the average behavior of members of an ensemble of rooms. Within the 
confines of a statistical solution, these predictions can be considered to be exact rather 
than approximate solutions useful only at high frequencies. 

The concept of a diffuse field can be extended to structural vibrations. For 
example, we can consider a diffuse field of bending waves with energy incident on a 
point in the plate from all directions. In a rectangular plate with simply supported 
boundaries, each bending mode can be represented by a sum of four traveling waves as 
shown in Figure 2. As in the case of room acoustics the direction of travel is given by a 

Figure 2. Directive and diffuse field representations for plate bending waves 

wavenumber vector for the mode. For a single mode of the rectangular plate there are 
only four waves and four directions of travel. For this case the field will be quite 
directive. At sufficiently high frequencies where many modes contribute to the vibration 
field, each with a different directions of wave propagation, the field in the rectangular 
plate can become diffuse if all modes have the same energy and uncorrelated response 
amplitudes. On the other hand, even a single mode of the irregular plate requires a large 
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number of waves to represent the field. Thus, the diffuse field approximation may be 
valid for the irregular plate even when only a small number of modes contribute to the 
response. 

In many applications SEA relies on the use of diffuse field models to represent both 
acoustic and vibration fields. Thus, from a deterministic point of view, SEA may be 
considered to be an approximate technique useful only at high frequencies. On the 
contrary, if we accept a statistical approach, SEA can be considered to be an exact 
technique, giving statistical estimates of the response of an ensemble of systems. 
However, in using a statistical approach it is dangerous to put too much confidence in a 
prediction of the ensemble average response, since the variance of the prediction over 
the different members of the ensemble may be large. If a prediction of the ensemble 
average response is used for product design, half of the products will fail! 

The proper use of SEA requires that the statistical nature of the prediction be 
recognized. Predictions of the ensemble average response are useful only when the 
variance of the prediction is acceptably small. 

2.1.3. Coupling Factor Calculations Using Reverberant Diffuse Field Approximations 
In SEA coupling loss factors are generally calculated using a wave approach. The 
acoustic or vibration fields in the two coupled subsystems are represented by reverberant 
diffuse fields and angle-averaged power transmission coefficients are used. The 
following steps are carried out. 

Step 1: Represent the field in each subsystem by a reverberant diffuse field. The 
diffuse field consists of waves incident from all directions with equal and uncorrelated 
amplitudes. The energy density in a traveling wave is given by 

e((p) = (o2m||A((p)|2 (1) 

The energy density in the diffuse field is found by integrating over all angles of 
incidence. For example, in a two dimension field of bending waves on a plate, the 
energy density is given in terms of the incident wave amplitudes as 

e = co2mJd<p^A(cp)|2 (2) 

If the field is also reverberant, the energy density will be uniformly distributed 
throughout the plate. The energy density can then be simply related to the total energy 
in the plate and its area, 

e = -^- (3) 
Apit 

The wave amplitude in the diffuse field can be obtained from the plate energy as 

\^f=1-Tl— <4> t ormApi, 
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Step 2: Calculate the transmitted power. The transmitted power is determined as the 
product of the incident power from the diffuse field and a power transmission 
coefficient. The intensity in a traveling wave is found by multiplying the energy density 
by the group speed, 

T((p) = Cge((p)ü (5) 

where u is a unit vector in the direction of wave propagation. Assuming the connection 
between subsystems to be at the edge of each subsystem, the intensity incident from a 
given angle is given by 

incident/„\_ 1  ^c9 

Jt 2Ap|t 
The transmitted power is given in terms of a power transmission coefficient by 

jtransmitted ^ _ jincident ^)x^) (7) 

The total power transmitted is found by integrating over the angles of incidence, 

w transmitted _ co9    ' 
2Aplt n -it/2 

Jd(p T(<p)cos(<p) (8) 

T 

where x is the angle-average transmission coefficient. 
The net power transmitted between subsystems is the difference between power 

transmitted from i to j and the power from j to i. Since the diffuse fields in the two 
plates are assumed to be uncorrelated, the net power is given by 

t«!transmitted   _   i"c cg.'Ti;i c    cg.iTi;i c 

~Ä~ '       A       ' 
(9) 

where L is the junction length. Note that the angle-averaged power transmission 
coefficients are not reciprocal due to the averaging. 

Step 3: Calculate the coupling loss factors. In SEA the net power transmitted is given 
in terms of coupling loss factors as 

^transmitted = ^ ,E. _ ^^ (10) 

The coupling loss factors are now determined to be 

The calculation of angle-average power transmission coefficients for plates is straight 
forward, though tedious for all but the simplest junctions. The integration over angle 
usually cannot be performed analytically so that some computational assistance is 
needed. Fortunately, numerical aids such as MATLAB make these calculations much 
simpler than they were when SEA was first developed, Heckl (1961). 
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3. Coupled Plate Results 

Measurements were performed on coupled plates separated by a beam to demonstrate 
the effect of structural irregularity. First, measurements were taken on a regular 
structure consisting of two rectangular plates, as shown in Figure 3. Beams were placed 
on both 

Figure 3. Coupled rectangular and irregular plates 

sides of the plate to avoid the complexity due to the coupling of bending and inplane 
modes at an asymmetric connection. Similar measurements were then taken on a 
irregular structure consisting of two five-sided plates. 

The baseline SEA model consists of four subsystems: two plate bending subsystems 
- one for each plate, a beam bending subsystem, and a beam torsion subsystem. The 
coupling factors between the two plates and the coupling factors from beam bending and 
beam torsion to plate bending were calculated following the approach used by Heckl 
(1961). Since diffuse fields are assumed for each plate, angle-averaged transmission 
coefficients were used in calculating the coupling factors. Damping loss factors were 
determined from decay-rate measurements and the energy flow equations were solved to 
determine the average vibration level for each plate. Results are shown in Figure 4. 

Predictions from the baseline SEA model are seen to be in good agreement with 
measured data for the irregular plates. In this case the reverberant diffuse field 
assumption made in calculating the coupling factors is valid, at least at the higher 
frequencies above 1,250 Hz. Predictions for the coupled rectangular plates are in poor 
agreement with measured data even at high frequencies. 

3.1 WHEN SEA DOESN'T WORK 

When SEA doesn't work it is usually a result of the reverberant diffuse field 
approximation. For one or more subsystems, the field is either not reverberant or not 
diffuse. A variety of new techniques have been identified to solve these problems. 
However, rather than replacing SEA with another technique, we should realize that SEA 
does not require the reverberant diffuse field approximation to be made. 

SEA is often restricted to high modal overlap. However, when there is high modal 
overlap and the source is localized, the vibration field may also be localized due to the 
dominance of the direct field. In such a case we find that the approximation that the 
field is reverberant is not very accurate. The plate damping for the measurements 
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Figure 4. Mode shape and wave distribution for rectangular plate with simply-support boundary conditions 

discussed above was sufficiently low that the modal overlap factor was not high, even 
though the modal densities were quite high. Thus, the assumption of a reverberant field 
is valid for both cases being considered. This may not be the case if the damping of one 
or both plates were increased. 

As would be expected from the discussion earlier in this paper, the diffuse field 
approximation is not valid for the rectangular plates. Although the modal densities are 
high so that many waves could be excited in each plate, only those waves (or modes) 
that match the wavenumber of the bending and torsional waves of the beam are strongly 
excited in the receiving plate. Thus, equipartition of energy does not occur in the 
bending wave subsystem of the receiving plate. The field in the receiving plate cannot 
be modeled as diffuse, although it is reverberant. 

To resolve this problem, the bending modes of each rectangular plate were divided 
into subsystems according to their coupling to the beam. Four bending subsystems were 
used for each plate: one for plate modes strongly coupled to the bending modes of the 
beam, one for plate modes strongly coupled to the torsional modes of the beam, one for 
plate modes coupled by mass-law beam response, and one for plate modes coupled by 
stiffness-controlled beam response. Coupling factors were calculated for these different 
subsystems using the same transmission coefficients used in the baseline SEA model, 
but without angle-averaging. The expanded SEA energy flow equations were solved 
and the energy of the four subsystems for each plate were added to predict the overall 
energy and average response level for the two plates. Results show a marked 
improvement over the baseline model at the higher frequencies above 1,000 Hz. At low 
frequencies, however, the expanded model underpredicts the response of the receiving 
plate. It is possible that at these lower frequencies, end conditions at the two ends of the 
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beam result in a more uniform distribution of coupling so that the transmission 
coefficients based on infinite beam and plate impedances are no longer valid. Further 
work is needed to extend the SEA predictions to these lower frequencies. 

4. Criteria For Structural Irregularity 

The measurements conducted on coupled rectangular and irregular plates show that a 
conventional SEA analysis is valid only for the irregular plates. Although the SEA 
model can be expanded to obtain accurate predictions for the rectangular plate, some 
measure of irregularity must be identified so that the proper modeling technique can be 
employed. In many cases, the analyst's judgment must be used. Decisions are made 
based on the shape of the plate and its boundary conditions. In many problems of 
practical interest, structural irregularity can be assumed. For example, most plate 
structures in a modern automobile can be modeled as irregular plates. Many plate 
structures in satellites and other space vehicles can also be modeled as irregular plates 
due to the presence of components loading the plate. 

Most cases where an irregular plate structure cannot be assumed occur in the 
laboratory. Idealized test setups with rectangular plates having simply-supported or free 
boundaries are often studied to gain a better understanding of vibration response and 
transmission mechanisms. 

Finite element models can be used to gain a more quantitative understanding of 
irregularity. Finite element models were developed for three plate configurations. The 
first consists of a rectangular plate with simply supported boundaries. The modes for 
this plate can be easily calculated. Figure 5 shows a contour plot of the mode shape for 
a single plate mode. A regular pattern of nodes and anti-nodes is observed. A two- 
dimensional transform of the mode shape can be used to displace the waves required to 
represent the mode shape. Figure 5 also shows the wave distribution for the mode. Four 
peaks occur representing the four traveling waves required to represent the mode. 

Figure 6 shows the same type of results for a plate with an irregular shape. In this 
case nodes and anti-nodes are observed, but there is no regular pattern. The wave 
distribution plot shows that many waves are needed to represent the vibration field of 
this mode. 

Figure 7 shows results for the third case in which the modes of a rectangular plate 
with irregular boundary conditions were identified. The contour plot of a single mode 
shape shows nodes and anti-nodes, as for the other two cases. However, as in the case 
of the irregularly shaped plates, no pattern is observed. The wave distribution plot is 
similar to the plot for the irregularly shaped plate. 
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Mode Shape Wave Distribution 

Figure 5. Mode shape and wave distribution for rectangular plate with simply-support boundary conditions 

Mode Shape Wave Distribution 

Figure 6. Mode shape and wave distribution for irregular plate with simply-support boundary conditions 

Mode Shape Wave Distribution 

Figure 7. Mode shape and wave distribution for rectangular plate with irregular boundary conditions 
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5. Conclusions 

Based on the work presented in this paper we conclude that SEA models can be used for 
both regular and irregular structures and acoustic spaces. However, models using 
coupling factors based on diffuse field representations of the vibration and acoustic 
fields in each subsystem should be limited to studies of irregular structures and acoustic 
spaces. System irregularity is seen to occur either because of irregular shapes or 
irregular boundary conditions. Both are fairly common in automotive, aerospace, and 
ship structures, so that the diffuse field representation continues to provide valid 
coupling factors for many cases of practical interest. 
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1. Introduction 

The basic concept of the SEA method has been primarily developed for 

analyzing problems in the aerospace engineering field such as the acoustic fatigue of 
outer-skin and the reliability of electronic equipments due to high frequency vibration 

in space vehicles during flight. Nowadays, SEA for the sake of its simplicity in power 
balance equation, has been recognized as useful and powerful tool for analyzing 

structure borne sound and practically utilized to assess the noise of products in the 
audible frequency range. In addition, with increasing needs for comfort in our living 

and working environment, requires the assessment of structure borne noise on a 

structure constructed with low and high modal density elements. 
The SEA method regards each element in the system as a combination of 

equivalent oscillators and evaluates macroscopically the energy transmitting among 
them in the sense of statistical average in the considered frequency band. Though these 
assumptions are valid for the structure borne sound analysis of a structure which 

consists of weakly coupled elements in high frequencies, so called high modal density 
elements, the properties of structure borne energy propagation of low modal density 

elements are affected by eigen modes of each elements of a structure, and it is difficult 
to consider these elements as an aggregate of equivalent oscillators which have nearly 
equal excitation. In the case of low modal density and weakly coupled elements, these 

oscillators show the different dynamic characteristics and have different energy storage 

levels, energy transfer to modes of other subsystems, and energy dissipation. It is 

difficult to predict the transmission power based on the mean value of energy transfer 

parameters. 
This paper presents a new prediction method of the structure borne sound of 



structure which is constructed with low modal density and weakly coupled elements. 
This method is based on the SEA concepts, but the subsystem in this method is consists 
of multi-oscillators which have different excitation by sources, coupling to other 
subsystems, and damping. The oscillators are excited by random moment and coupled 
with infinite elements. And the power flow among them are calculated using the natural 

frequencies and eigen modes. 
In this paper, a system equation describing the energy flow is formulated with modal 
parameters of each elements and numerical simulation of plate structure are shown. 

2. Numerical Formulation 

2.1 Vibratory Energy 

2.1.1 Mean square velocity 
Using modal parameters, such as modal mass m„, mode shape $„, modal damping 

r|„ and eigenfrequency (0n„ the vibration velocity v(xr) caused by the distributed load 

p(xs) is written as follows, 

(1) 

#(^J0 = 2sin—«m-j-j. 

(a) Modal response by distributed load (b) Moment Inpedance 

Figure 1 Calculation model for vibration energy and transmitting power 

Now let us assume the spatially random load, the spatial average of the square velocity 
is given by 

vi(^;fi)=jß>TiG„r^K)ij^w^Kr^ 
-WIPS^MM (2) 

where m" and m" denote the mass per unit area and the mean value of m". 



Integrating eq.(2) by the frequency range [©1,0)2] yields the mean square velocity v*A in 

the frequency band (Q,Ao>) 

Sm"      ml^al-a1) + /7XJ 

= -Ll,—±—gM (3) 
.,2K-fl>„)   ,._.,2(fl>,-a>.) 

j» =tan   —: tan     

where fi>i,a)2 are the lowest and highest frequency respectively, and Z shows the 

amount of eigen modes in frequency band (fi.Ato), and |Pf/Sn?' denotes the equivalent 

input power and the parameter g„ means the contribution of the n-th oscilator, such as 

the n-th mode of element, for the mean square velocity vA
2(ft). 

2.1.2 Kinetic energy 

Let us suppose that the equivalent random load pe(©,Xq) is uncorrelate in the time 

domain and in the spatial domain. The equivalent distributed load pe(e>,Xq) causes the 

vibration velocity v(ro,x), and the power spectrum of kinetic energy TA(fi) in the 

frequency band (Q,A©) is written by 

r4(fl) = \\tf\m(xfyt\(*.*>*)A(0'x*)k* dsdtos 

Using the kinetic energy TA in eq.(4), the modal energy of the element EA is expressed 

as follows, 

E,(Cl) = 27; (£2) = Z^— &Pf = Sm" vT(fi) (5) 

2.1.3 External input power 
The power spectrum of input power by distributed load p(x«) in the frequency 

band (Q, A©) is given by 

»tn)-}jRa{jJZy«G>.KV.(*.)/<*.K/'*(*rK)rfa' 

i?i'-fw*.W'.)*.r 
2.1.4 Transmittng power from i-th element to i-th one 

Fig.l illustrates a coupling model of a plate and an inpedance element. Taking 



the moment inpedance of semi infinite plate into consideration, the transmitting power 
from the plate to the impedance element WA(ß) is written as follows, 

2 (7) 
.IlS_*^.Re{z(n)}|lf 

where ka, Z, h are wave number, moment impedance and plate thickness respectively. 

2.2   System equation of 2-element model 

In this paper, let us approximate that the transmitting power from i-th element to j-th 
element is expressed as transmitting power from finite elemnt i to semi infinite elemnt j 
as shown in Fig.2. Using eqs.(5)~(7), the external input power of i-th element, the 
vibration energy, the dissipated energy and the transmitting power to j-th element are 

rewritten as follows, 

External input power ^°(fi) = -^==£—g\P0\ (6') 
2 Sm      m. 

Vibration energy Et (ß) = £- 8.\H <5') 
2OT»l7,,ß,

n 

Dissipated power W? (ß) = ©I n„ r —g„ |?|       (8) 

Transmitting power ^(ß) = ^Ll*'"/?,(Z)g„|^3 CO 

Taking the energy balance of i-th element into consideration yields the following 
equations, 

w;+wt'W,'+wt 
1   l   v l „IPI

1
*

1
* V**M^2„|P|

2 

7, „ g.\P,\ +^LvL „ _   g*\pi 

=1—*>. =fi,U:'?-^TT-^+L^^r^:g- ffl 
(9) 

In the above eq.(9), the first term denotes internal dissipated power and transmitted 
power from i-th to j-th element, and the second term shows the transmitted power from 
j-th to i-th element. In each term, the denominator includes the internal loss factor TI„, 



this shows the decreasing the loss factor increases the vibration energy. And in die term 
of transmitting power, Li-E^jjie^ym^^^ denotes the coupling loss. 

(a) Power flow of 2-element Model (b) Power flow of multi-element model 

Figure 2 Power flow model taking the energy balance of i-th element into consideration 

2.3 System equation of Multi-element 

Taking consideration the energy balance in the multi-element system shown in Fig.2, 
the system equation is given by 
GP„ = ßYP 

(10) 
G = diag.--==[Zgn] 

WA, ' 2OT.ö). 

r.- 

a-"--"-""2t,m*.m;
g'     '   ; 

Q 2^„fl)„ m„ 



3. Numerical Simulation 

3.1 The effect of coupling stiffness 

Fig. 3 shows the coupling stiffness based on the moment impedance of semi-infinite 

plate and the modal stiffness of plate. Fig.4 shows the effect of coupling stiffness on 

eigen frequencies. The coupling stiffness in Fig.3 and Fig.4 is formulated as follows 

From the Fig.3 and Fig.4, it is found that the increase of frequency decreases the 

moment impedance, decreases the coupling stiffness based on the moment impedance. 

In the low coupling stiffness range, which means that the ratio of the coupling and the 

modal stiffness kAn is small enough, the influence of coupling stiffness is negligible, 

and the ratio of the coupling and the modal stiffness kAn of 10mm thick steel plate is 

small (kc/km«0.1) in the frequency range over 10Hz. This shows that the two 

subsystems are weakly coupled. 

10v 

modal stiffness   km 
coupling stiffness   kc 

10 10* 10' 10 
Frequency f[Hz] 

Figure 3 Relationship between modal stiffness and coupling stiffness 
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Figure 4 Effects of coupling stiffness on eigen frequencies 

3.2 The relationship of parameter &, and mode count AN 

In order to consider the effect of each mode on the vibration energy in the frequency 

band (fi,Ae>), the system equation is formulated as the function of parameter g, in this 

method. In the SEA method, Eg,, is approximated to mode count AN as follows, 

yg =Itan-.2KzfO_to-,2KZ£0=;^ (12) 

Fig.5 shows the relation ship between Eg„ and AN. In the frequency range which the 
mode count AN is greater than 50, the amount of & is approximated as Eg^AN, and 

the influence of internal loss factor is very small. And in the low modal density range, 

the effect of the internal loss factor is large and the error of the approximation by 

eq.(12) becomes large. 

Figure S Relationship between mode counts and parameter g„ 



3.3 The vibration levels of 2-element system 

In order to discuss the characteristics of the power transmission, the present 

method was applied to the 2-element plate model as shown in Tab. 1. 

Table 1 2-element model 

element 1 element 2 

External Force [N/m2V~Hz] 1.0 ~ 

width and length [m] 5*5 5*a2 

thickness [m] 0.01 h2 

internal loss factor 0.005 12 

Young's Modulus [Pa] 206*10' 206* 109 

density     [kg/m3] 7.86* 103 7.86* 103 

Poisson's ratio 0.3 0.3 

Fig.6 shows the relationship of the vibration levels and the thickness ratio h2/hi in 

the case a2=5m, frequency Q=27t*31.5rad/s. The decrease of the thickness of the 

element 2 decreases the vibration level of element 2, and the vibration level of element 

1 converges to the constant value, which is equal to the vibration level of 1-element 

model. And this means that the power transmitted to element 2 is decreased and all 

most of the vibration energy is dissipated in element 1 in the case of very small 

thickness ratio h2/h,. At the thickness ratio h2/hi=1.0, the vibration levels of each 

element becomes to neary equal value and the level is 3dB less than the vibration level 

of element 1 ath2/hi=0.1. 
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Figure 6 Effects of thickness ratio on violation levels 



Fig.7 shows the relationship of the length of elements a2 and the vibration 
levels at Mn=1.0, frequency Q=2rc*31.5rad/s. The increase of the length of element 2 
decreases the vibration energy of element 2. In this case, the coupling loss and the total 
input power are not changed and the total vibration energy of element land 2 are 
constant. And the increase of the mass of element 2 bring forth the reduction of 
vibration level of element 2. The decrease of vibration level of element 1 means that 
the increase of the power transmission to element 2 caused by the decrease of vibration 

level of element 2. 
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Figure 7 Effects of length of elements on violation levels 

Fig.8 shows the comparison of the calculated results of SEA and the presented 
method. The model is 2-element model and the dimension of both elements are 5m*5m 

and 0.01m thickness. 
The vibration levels of this method is similar to the results of SEA. But the vibration 
level of element 2 is a few dB higher than SEA results at each frequency bands. And 
the total of die vibration level of presented method results are same with SEA results, 
this shows the distribution of energy is different from SEA resuts. 
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Figure 8 Comparison of vibration levels calculated by presented method and SEA 



4. Conclusions 

In order to estimate the vibratory characteristics of structure which is constructed 
with low modal density and weakly coupled elements, a new prediction method of the 
structure borne sound is presented. This method regards each element in the subsystem 
as a combination of modal oscillators and evaluates macroscopically the energy 
transmission among them in the considered frequency band, but die subsystem in this 
method is consists of multi oscillators which have different excitation by sources, 
coupling to other subsystems, and damping. And the power flow among them are 
calculated using the natural frequencies and eigen modes. 

In this paper, a system equation describing the energy flow in the structures is 
formulated with modal parameters of each elements and numerical simulation of plate 
structure are shown. 
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1. Introduction 

Prediction of the noise transmitted from machinery and flow sources on a submarine to 
the sonar arrays poses a complex problem. Vibrations in the pressure hull provide the 
main transmission mechanism. The pressure hull is characterised by the very large 
number of modes over the frequency range of interest (at least 100,000) and the high 
modal overlap, both of which place its analysis beyond the scope of finite element or 
boundary element methods. We present a method for calculating the transmission, 
which is broadly based on Statistical Energy Analysis, but extended in two important 
ways: (1) a novel subsystem breakdown which exploits the particular geometry of a 
submarine pressure hull; (2) the explicit modelling of response level variations within a 
subsystem. The method takes account of fluid-structure interaction, the underlying 
pass/stop band characteristics resulting from the near-periodicity of the pressure hull 
construction, the effect of vibration isolators such as bulkheads, and the cumulative 
effect of irregularities (e.g. attachments and penetrations). 

2. Background 

The sonar arrays we are concerned with are positioned on the forward flanks and the 
bow of the submarine. The sources of structure-borne sound include the propulsor, 
other machinery internal to the submarine, and the external flow. The principal 
machinery sources are mostly sited well aft of the arrays. The estimation of the noise 
transmitted from these sources to the arrays, over a range of frequencies up to a few 
kHz, poses a complex prediction problem. It is worth making three initial observations. 
(1) With regard both to flow sources and remote machinery the pressure hull itself 

provides the most important structural transmission path to the arrays, as opposed 
to the contribution from internal structure such as decks. This is mainly due to the 
large impedance mismatch at all junctions with the pressure hull, combined with 
the complex nature of these internal structures. Within the pressure hull, both 
flexural-like waves and in-surface waves (compression and shear) provide 
potentially important transmission mechanisms. 

(2) The pressure hull is made up of a cylindrical shell internally braced against 
external pressure by circumferential T-section frames. The frames are fairly 
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regularly spaced axially, and they are substantial enough to present a significant 
impedance to the pressure hull. They thus produce a characteristic pass- and stop- 
band frequency variation of the structure-borne transmission. 

(3)   The submarine is divided into a small number of separate compartments by 
bulkheads. These are significant reflectors of structure-borne energy incident in 
the pressure hull, and need to be taken into account in any predictive procedure. 

In the discussion that follows, therefore, we shall consider the combination only of the 
pressure hull (including the frames) and the bulkheads, in the presence of an external 
fluid. The external fluid has three distinct effects [1]: mass loading of the structure; 
adding effective damping through radiation; and fluid short-circuiting of vibration 
attenuators, including tile frames and bulkheads. 

The flat plate coincidence frequency (i.e. the frequency where flexural wavelengths 
match acoustic wavelengths (see [1]) is typically at the top end of the frequency range 
of interest here. Nevertheless, radiation loss from flexural waves on the structure still 
occurs below that frequency due to the effects of curvature and wave scattering by the 
frames. Indeed radiation damping tends to dominate intrinsic structural damping, 
producing loss factors typically in the region of 10'2 to 10"1. Modal overlap is 
consequently high, and the global structure non-reverberant with regard to flexural-like 
waves (though local build-up of reverberant energy remains a possibility). 

It is possible to design different frame spacings for different sections of the 
submarine such that pass bands in one section coincide with stop bands in another. In an 
"ideal" structure, it would then be theoretically possible to achieve extremely low 
transmission. The necessary variations in frame spacing are of the same order as those 
typically present (for other reasons) on a submarine. We shall see that the "ideal" low 
transmission is in practice short-circuited by the cumulative effect of small-scale 
irregularities in the structure, which produce a small but significant degree of coupling 
between the different wavetypes. For long range transmission, it is essential to include 
such effects in the prediction methodology. In this paper we propose a statistical 
approach to this problem based on an analysis of power flow on a ribbed cylinder. We 
shall begin by reviewing the underlying dispersion characteristics of the corresponding 
perfectly regular structure. 

3. Dispersion characteristics of a fluid-loaded ribbed cylinder 

Consider the vibration transmission characteristics of an infinite regularly-framed 
rotationally-symmetric fluid-loaded thin cylindrical shell. For such a structure, it is 
possible to decompose the global problem into a set of independent one-dimensional 
problems, indexed by "angular order" n = 0, 1,2,... Each component of the solution 
then has circumferential behaviour like cos nö or sinnd, where 8 is the 
circumferential angle. The detailed theory was described for the in vacuo case by 
Hodges et cd. [2]. 

Fluid loading is formally incorporated into the scheme by adding to the kinetic 
energy extra terms representing the response of the fluid to radial motion of the shell, as 
determined by the kinematic boundary condition. This incorporates both mass loading 
and radiation damping. The determination of the fluid-loaded transmission modes then 
involves the solution of a matrix eigenvalue problem. This cannot however be solved by 
standard matrix procedures due to the non-algebraic frequency dependency in the fluid- 
loading terms. A non-linear equation solver is adopted. For each transmission mode, 



STATISTICAL POWER FLOW 

several relevant quantities can be readily calculated from the eigen-solution, including 
the frequency, group velocity, radiation loss factor, mode shape and admittance. 

These propagation modes are plotted in Fig. 1 on a frequency/angular order 
diagram. The waves are dispersive and the wavenumber spectrum exhibits very 
characteristic features, notably the pattern of pass and stop bands whose positions vary 
with angular order. This predicted pattern has been well validated by comparison with 
detailed model scale measurements both in air and in water. 

The relative width of stop and pass bands depends on their position with respect to 
the "rib coincidence" line, along which the frames become essentially transparent to 
flexural waves in the cylinder shell. Its position is delineated by the bottom edge of the 
'Type C" band shown shaded on the figure. We can divide the propagation modes into 
four classes. For wavenumber-frequency values to the left of this line, the 'Type L" 
flexural modes tend to have high axial group velocities and wide pass-bands, and 
usually have high radiation damping. Conversely the 'Type R" modes to the right have 
high circumferential group velocities and narrow pass-bands, and low radiation 
damping. The transition region around the rib coincidence line is associated with 
"Type C" modes (the shaded region on the Figure). These have the broadest pass bands 
of all, giving them low spatial attenuation rates due to structural damping, and they also 
have rather low radiation damping. Finally it is useful to group all in-surface modes, 
including compression and shear types, into a single class, designated "IS". These are 
confined to the region to the left of the relevant line on the figure. 

4. Statistical modelling 

4.1. REALISTIC STRUCTURES 

This deterministic model of a perfectiy regular structure is adequate to represent the 
characteristics of transmission over a few frame bays. However for long-range 
transmission on a realistic structure, a number of complicating factors need to be taken 
into account: 
(1) the finite length of the structure; 
(2) the effects of isolated attenuators (e.g. bulkheads); 
(3) the effects of distributed axial irregularities (e.g. variable frame spacings); 
(4) the effects of other irregularities (e.g. attachments, penetrations, constructional 

imperfections, partial frames etc.). 
As discussed earlier, in the absence of other irregularities variable frame spacings 

can produce a theoretical flexural wave transmission which is extremely low. In this 
case, (4) above becomes crucially important — although the scattering from an 
individual irregularity is typically small, the cumulative effect is significant, producing 
a weak "diffusive" scatter between angular orders which can short-circuit the theoretical 
low transmission. Of course all the above effects can in principle be modelled 
deterministically, by augmenting the idealised theory. However this deterministic 
approach either loses accuracy (because the assumptions made in order to make the 
problem tractable become invalid) or the degree of complexity in the problem becomes 
unmanageable. It is inevitable then that we consider methodologies where the 
irregularities and their effects are represented statistically in some way. 
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Figure 1: Pass- and stop-band structure for a typical ribbed-cylinder geometry, which 
corresponds to the small-scale model studied in [2]. 
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4.2.  SUBSYSTEM BREAKDOWN 

We start by considering the standard statistical approach for structural vibration 
problems — Statistical Energy Analysis or SEA (see [3,4]). Within SEA, a structure is 
first divided into discrete subsystems within which response levels are assumed to be 
homogeneous. Linear equations are then set up to represent energy exchange and 
balance between these subsystems. By solving these, it is possible to deduce the 
response level within each subsystem in terms of the energy input from excitation 
sources. 

Perhaps the most obvious subsystem breakdown of the pressure hull would be into 
individual frame bays, frames etc. However it is well known that a breakdown of a 
periodic or near-periodic structure into periodic elements in this way produces an SEA 
model with qualitatively the wrong behaviour (see [4]), essentially because SEA 
neglects coherence effects which are crucial in determining the transmission 
characteristics of the periodic structure. 

Our approach is to take a macro-scale view of the pressure hull structure, regarding 
the ribbed cylinder as a kind of composite material with rather complicated dispersion 
characteristics for vibration transmission. We can then choose physical subsystems 
which are many frame bays in length. There are now the usual conflicting 
considerations with regard to SEA — breakdown into small subsystems produces high 
resolution, but larger subsystems may be necessary in order to satisfy the SEA 
requirement for high modal density and overlap per subsystem. Here we shall discuss a 
derivative of SEA — the statistical power flow method — which attempts to satisfy 
both objectives, using physical subsystems which are as large as is sensible, but 
allowing for variation of levels within each subsystem consistent with the known 
transmission and radiation characteristics of the various wavefields. 

The first breakdown is into physical sections or "chunks". There may be half a 
dozen or so chunks to a submarine, and they are what might most easily be inferred 
from a drawing, without any reference to vibration — the Main Machinery 
Compartment or Reactor Compartment, for example. They relate to sections of pressure 
hull in which we would expect no sudden changes in vibration levels or transmission 
characteristics. A chunk boundary would be placed at a significant reflector (e.g. a 
bulkhead) or a change in transmission characteristics (due to a change in mean frame 
spacing or shell thickness, say). Ideally a chunk should be many bays long, so that the 
infinite-cylinder dispersion characteristics can become established within a chunk. Such 
evidence as we have suggests that "many bays long" in this context means "at least 
three bays long". A further breakdown into different wave types is now necessary, to 
represent in some way the wide range of transmission characteristics. Again, an 
extremely fine subdivision into individual propagation branches and individual angular 
orders is entirely feasible. However we have opted for a coarser breakdown into four 
wavetypes. These are the in-surface (IS) modes, and the flexural L-, C- and R-modes 
discussed earlier. 

4.3. POWER-FLOW ANALYSIS WITHOUT COUPLING 

This slightly unusual subsystem breakdown could, of course, be used with standard 
SEA. SEA parameters like modal densities and coupling loss factors are easily 
computed from the deterministic model discussed above. The difficulty for SEA is that 
many of the flexural subsystems are non-reverberant, largely due to the high rates of 
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radiation damping provided by the external fluid. Thus the assumption of homogeneous 
response within a subsystem — intrinsic to SEA — is invalid. 

Instead, for these quasi-one-dimensional subsystems, it turns out to be quite easy to 
implement an analysis of power flow which ignores phase information but is otherwise 
in a certain sense "exact". This theory corresponds to "ASEA°°" as defined by Heron 
[5]. Consider two "chunks" of the pressure hull, coupled end-to-end, each carrying 
four subsystems. Since each chunk is a spatially-uniform section of ribbed cylinder, 
then a theory which ignores phase only requires two parameters to specify the complete 
energy field in any one subsystem: the amplitudes of the left-travelling and right- 
travelling "energy waves". For definiteness, define the amplitudes in they'th chunk such 
that the amplitudes of left-travelling energy density in the various internal subsystems 
are given at the right-hand end by the vector Lj, and the corresponding amplitudes of 
right-travelling energy at the left-hand end by the vector Rj. Each of these "energy 
waves" will decay exponentially as it travels, at a spatial rate determined by the 
subsystem damping factor and group velocity (suitably averaged over the frequency 
band under consideration). Apart from "near fields" around any localised energy 
source, the energy field in a given subsystem can be described exactly (within the 
context of a theory ignoring phase) as a linear combination of these two exponential 
basis functions. 

It is now straightforward to obtain a closed set of equations for these energy 
amplitudes, by considering the reflection and transmission behaviour at the junction, 
together with perfectly-reflecting boundaries at the ends of the system. Some energy 
input is needed, of course. The simplest way to include this for a first examination of 
the results of this theory is to inject power at one end of the system at a known rate, and 
solve for the resulting distribution of energy density over the whole system. The system 
is illustrated schematically in Fig 2. 

Power 
input Bulkhead 

Chunk 1 Chunk 2 

Figure 2: Schematic diagram of system and basis functions for "energy waves" 

Energy associated with the different subsystems has different rates of exponential 
decay with distance. The amplitudes of the "energy waves" by the time they reach the 
far end of the chunks can thus be represented by two diagonal matrices A.\, A^ such 
that, for example, the right-travelling energy in chunk 1 has a vector of amplitudes at 
the right-hand end (i.e. the bulkhead) of AiRj. The elements of these matrices are 
simply given by the exponential rates and the lengths of the chunks. 
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If we now define the power input to be a vector P, and the matrices of reflection and 
transmission coefficients at the bulkhead are now called p, T respectively, then we can 
write down equations of energy-flux balance as follows: 

Hi = AJLJ + P 

(1) 

It is straightforward to solve this set of linear equations, and hence find the energy 
distribution across the whole system. Examples will be shown shortly. 

L1 = °P\*l + TA2L2 

R2 
= TAjR! + pA2L2 

2 = A2R2 

4.4. POWER-FLOW ANALYSIS WITH COUPLING 

First, we discuss a development of the theory to allow for the scattering effects of 
irregularities. Motivated by SEA, the approach we propose here is a heat-diffusion 
analogy of the parallel energy paths within each chunk. We allow some "leakage" 
between the paths at a rate proportional to the local difference of "temperatures". For 
clarity of exposition, consider just two such coupled paths. The governing equations are 
assumed to take the form: 

C *Tl Cl!7 ■Al
7l+ai2(7i 

d2T2 

(2) 

C27T-A2r2 + al2(T2 -r,) 
ox 

where T\, T2 are the SEA "temperature" variables for the two paths, i.e. the densities of 
energy-per-mode, and Q,C2 are effective diffusivities. These diffusivities are 
determined by the requirement that, in the absence of the coupling term, each path 
should have the correct rate of spatial decay, as provided by the deterministic model. 
This requires 

Q -.c2 A, 
(3) 

1 "2 
where cg is the (appropriately averaged) group velocity. The loss coefficients Aj, A2 
are the same as in standard SEA, and the coupling term involves the constant ayi 
whose value, in practice, is determined empirically by matching the length-scales of 
breakthrough energy transport to those found from relevant measurements. 

Generalised in the obvious way to allow for the four subsystems per chunk, these 
equations can be written 

"Ai +cti2+ai3+ai4   -al2   -a13   -au' Q 0 0 0 r, 
0 c2 0 0 T2 

0 0 c3 0 T3 

0 0 0 c4. T* 

-«12 

-ai3 

-a14 

(4) 

But these are just the familiar equations for a four-degree-of-freedom vibrating system, 
with spatial derivatives in place of time derivatives, and with the two matrices on the 
left- and right-hand sides playing the roles of "mass" and "stiffness" matrices. We can 
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solve them by a "modal" transformation. The (generalised) eigenvalues of this pair of 
real, symmetric matrices give the spatial decay rates (squared) of the "modal" 
combinations of energy levels in the various subsystems. If we construct the matrix Q 
whose columns are the eigenvectors (normalised with the "mass matrix", i.e. the 
diagonal matrix of diffusivities), then it can be used to map energy vectors into and out 
of these "modal" combinations. 
The result is that the analysis of the previous subsection carries over directly to this new 
case, provided only that we replace the matrices Ai, A2 by the combinations 
Qh.\Q~X .0^20" » where the diagonal matrices A\, A2 here are calculated like the 
earlier ones, but using the eigenvalues for the decay rates. This formalises the 
translation into and out of modal coordinates in order to calculate the energy decay 
factors from end to end of the chunks. 

5. Example calculations 

For the purposes of illustration, a submarine structure consisting of two "chunks" of 
pressure hull separated by a bulkhead (modelled as a thin flat plate) will be considered. 
The length of chunk A will be LA = 10 frame bays, and that of B will be Lg = 15 bays. 
A normalised input of 1 Watt/Hz will be assumed into each of the four subsystems of 
chunk A at the end remote from the bulkhead. The ribbed cylinder geometry 
corresponds to the small-scale model studied in [2]. 

The spatial average of the SEA temperature (energy per mode) within each of the 
four subsystems of chunks A and B is plotted in Figs. 3(a)-(d), for the different 
subsystem types. Each graph displays results calculated using both "standard" SEA and 
the statistical power flow method without "leakage" coupling. On each graph the two 
predictions for chunk A (the driven section) are virtually indistinguishable. However 
within chunk B very large differences are observed, particularly for types R and C, 
corresponding to transmission modes having the most rapid spatial decay. In effect 
standard SEA is assuming that the energy incident on the chunk boundary is the same 
as the spatially averaged result. This is much greater than is actually the case (because 
of the rapid rate of spatial decay in some subsystems). Therefore a greater transfer of 
energy into chunk B is predicted, with consequently higher estimated levels. 

These results may be compared direcdy with those in Figs. 4(a)-(d), which show the 
same comparison calculated with non-zero values for the coupling parameters ay . 
These parameters are given the same value between every pair of subsystems in each 
chunk, purely for illustrative purposes. This models "a little coupling of everything to 
everything". To provide some idea of the magnitude of these coupling terms in the 
cases to be shown, they are expressed as a fraction of the damping rate AJfrMCt due to 
structural damping alone, since this is set at a constant value 0.005 to for all 
subsystems. The diagonal terms of the matrix appearing on die right-hand side of eq. 
(4) also contains the contribution from radiation damping, which varies with mode type 
and with frequency, and is in general much bigger than the structural contribution. 

The coupling value used to compute Fig. 4 is only ^struct 11000. Even with this 
tiny amount of coupling, the very low levels predicted in chunk B for types R and C are 
substantially increased. The main mechanism for this is that the bulkhead forms only a 
very weak reflector for IS waves, and to a lesser extent for type L waves. Energy 
transmits into chunk B by these mechanisms, then can scatter back into types R and C. 
By the far end of chunk B, the SEA temperatures of types R and C had been raised, due 



STATISTICAL POWER FLOW 

to the coupling, to the extent where they were comparable with that of type L. 
To gain some physical insight into the effect of coupling, we present some plots of 

spatial energy distribution. The energy density is plotted at each mid-bay position. 
The bulkhead is at the end of bay 10, and an obvious drop of levels occurs there. 
Figures 5(a) and (b) show two representative results without coupling, for two different 
frequency bands. Figures 5(c) and (d) show the results for the same frequency band as 
Fig. 5(b), with coupling equal to AJ&MCt/1000 (as in Fig. 4) and A^^c/lO, 
respectively. 

The non-reverberant nature of some of the subsystems is immediately apparent in 
the cases without coupling. For the higher frequency shown here, in Fig. 5(b), the Type 
L modes particularly are showing a very rapid spatial decay. This can be attributed 
mainly to their high damping (predominantly by radiation). It is no wonder, with such 
extreme non-reverberant behaviour, that SEA does not predict the response at all 
accurately. Notice in Fig. 5(b) that because the Type L modes show rapid spatial decay 
and are also coupled to the Type IS modes, the resulting pattern has a local maximum 
near the bulkhead. What is happening is that energy initially fed into the Type L modes 
decays rapidly, so that little of it reaches the bulkhead. However, energy reaches the 
bulkhead quite efficienüy via the Type IS modes, and some of it is then scattered into 
Type L modes, travelling outwards from the bulkhead in bom directions. These again 
decay rapidly, producing the local maximum. 

As one would have expected, in the presence of coupling the very low levels, 
especially those associated with Type L modes, are raised. In compensation, the rate of 
decay of the Type IS modes becomes progressively faster, as more energy leaks out of 
these modes into other, more highly damped, mode types. By the case shown in Fig. 
5(d), all four mode types get rather rapidly locked together, and decay along parallel 
tracks. The particular proportions of energy in the four types when they are thus locked 
together are those of the eigenvector having the lowest decay rate. This is always the 
only eigenvector all of whose terms are positive, so that it is the only one which has 
physical significance in isolation. The proportions given by this eigenvector play 
somewhat the same role in this coupled system as does the condition of "equipartition 
of energy" in normal SEA: it is the state the system tends towards given sufficient 
length for the pattern to develop. 

6. Conclusions 

A statistical approach for modelling the transmission of vibration along a realistic 
submarine pressure hull has been developed. Fluid-loading effects are included in the 
modelling and are significant. Standard Statistical Energy Analysis is not adequate to 
deal with the rather special geometry of the submarine pressure hull., but the proposed 
new model captures details of behaviour which are in accordance with experimental 
findings. In particular, "leakage" of energy between angular orders as a result of 
irregularities in the hull structure can "short-circuit" a reflector such as a bulkhead. 
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Figure 3(a). Comparison of power-flow modelling 
with SEA, in the absence of leakage coupling, for 
the Type L modes. Solid line: section A, SEA; 
dash-dot line: section B, SEA; dotted line: section 
A, power flow; dashed line: section B, power flow. 
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Figure 3(b). Comparison of power-flow modelling 
with SEA, in the absence of leakage coupling, for 
the Type C modes. Solid line: section A, SEA; 
dash-dot line: section B, SEA; dotted line: section 
A, power flow; dashed line: section B, power flow. 
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Figure 3(c). Comparison of power-flow modelling 
with SEA, in the absence of leakage coupling, for 
the Type R modes. Solid line: section A. SEA; 
dash-dot line: section B, SEA; dotted line: section 
A, power flow; dashed line: section B, power flow. 

Figure 3(d). Comparison of power-flow modelling 
with SEA, in the absence of leakage coupling, for 
the Type IS modes. Solid line: section A, SEA; 
dash-dot line: section B, SEA: dotted line: section 
A, power flow; dashed line: section B, power flow. 
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Figure 4(a). Comparison of power-flow modelling 
with SEA with constant leakage coupling of 
ay - A gnu;, 11000 , for the Type L modes. Solid 
line: section A, SEA; dash-dot line: section B, SEA; 
dotted line: section A, power flow; dashed line: 
section B, power flow. 
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Figure 4(b). Comparison of power-flow modelling 
with SEA with constant leakage coupling of 
atj - Agflurt /1000 , for the Type C modes. Solid 
line: section A, SEA; dash-dot line: section B, SEA; 
dotted line: section A, power flow; dashed line: 
section B, power flow. 
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Figure 4(c). Comparison of power-flow modelling 
with SEA with constant leakage coupling of 
a ij - A stoß, 11000 , for the Type R modes. Solid 
line: section A, SEA; dash-dot line: section B, SEA.; 
dotted line: section A, power flow; dashed line: 
section B, power flow. 
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Figure 4(d). Comparison of power-flow modelling 
with SEA with constant leakage coupling of 

/1000 , for the Type IS modes. Solid *<;' 'struct 
line: section A, SEA; dash-dot line: section B, SEA; 
dotted line: section A, power flow; dashed line: 
section B, power flow. 
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Figure 5(a). Spatial distribution of energy along the 
two-chunk model, without leakage coupling, in the 
frequency band centred on 2250 Hz. Solid line: 
Type L modes; dashed line: Type C modes; dash-dot 
line: Type R modes; dotted line: Type IS modes. 
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Figure 5(b). Spatial distribution of energy along the 
two-chunk model, without leakage coupling, in the 
frequency band centred on 6250 Hz. Solid line: 
Type L modes; dashed line: Type C modes; dash-dot 
line: Type R modes; dotted line: Type IS modes. 
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Figure 5(c). Spatial distribution of energy along the 
two-chunk model, with leakage coupling at level 
a,j - h struct '1000 , in the frequency band centred 
on 6250 Hz. Solid line: Type L modes; dashed line: 
Type C modes; dash-dot line: Type R modes; dotted 
line: Type IS modes. 
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Figure 5(d). Spatial distribution of energy along the 
two-chunk model, with leakage coupling at level 
an - Astnjtf 110 , in the frequency band centred on 
6250 Hz. Solid line: Type L modes; dashed line: 
Type C modes; dash-dot line: Type R modes; dotted 
line: Type IS modes. 
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ABSTRACT 

This paper reviews recent research into the development of simple relationships between 
mean-square dynamic strain and vibrational velocity for the estimation of maximum dynamic 
strain levels in randomly vibrating structures. These relationships provide a consistent 
approach with a firm theoretical basis for the estimation of dynamic strain from vibrational 
velocity in all types of structures, independent of the type of structural element (beam, plate 
or cylindrical shell) and the frequencies of excitation (resonant, non-resonant, multi-modal 
and broad-band vibration in the low-, mid- and high-frequency ranges). The relationships 
developed are based on farfield relationships, factors for the effects of evanescent waves, 
and correlations between the spatial maxima of dynamic strain and velocity. 

1.        Introduction 

Analyses of dynamic stress and fatigue are necessary for structures and piping systems that 
are subject to random vibration caused by mechanical, acoustic or flow-induced forces. 
These analyses should be performed during design, after installation and commissioning, and 
on existing plants and structures to identify potential failures before they occur. Problems 
with dynamic fatigue occur regularly and often result from a failure to take dynamic stress 
and fatigue into account, either during design or after changes in plant and excitation levels. 
The situation is also hampered by a lack of suitable methods for predicting dynamic stress 
during design and after installation. 

The objective of the present work is to develop simple relationships for determining dynamic 
stress and strain levels in randomly vibrating structures and piping systems from either 
calculated or measured vibrational velocity levels. Relationships have previously been 
developed for single mode resonant vibration of beams [1,2,3] and broad-band resonant 



Vibration of plates and cylindrical shells [4,5], but the problems of (i) non-resonant vibration 
and multi-modal resonant vibration of beams, plates and cylindrical shells and (ii) the single 
mode resonant vibration of plates and cylindrical shells have not been considered. The work 
presented here addresses these additional cases and provides a consistent approach which 
is the same for all cases irrespective of the type of excitation or the type of structure. 

One of the key applications of the techniques considered here is the measurement of 
maximum dynamic strain in structures and piping systems using portable accelerometers in 
place of permanently mounted strain gauges. The use of relationships between dynamic 
strain and velocity to estimate dynamic strain provides a practical alternative to the use of 
strain gauges that is less susceptible to environmental conditions, is less sensitive to the 
location of maximum dynamic stress, and which can be undertaken at lower cost. 

A more detailed literature review and treatment of the work contained here is given in 
Reference [6]. 

2.        Overview of Method 

Using travelling wave solutions as the basis of the theoretical framework to be developed, 
farfield relationships are derived between the propagating wave components of dynamic 
strain and velocity. These relationships are derived for beam, plate and cylindrical shell 
structural elements. Formal relationships for the correlation of dynamic strain and velocity 
spatial maxima are then defined. These latter relationships incorporate explicit factors for 
the effects of evanescent waves on farfield relationships between dynamic strain and 
velocity, and are based on analyses of dynamic strain and velocity spatial distributions 
(Karczub[6]). Factors for the effects of evanescent waves are subsequently incorporated in 
a single overall factor relating the spatial maxima of dynamic strain and velocity for practical 
applications. Theoretical spatial distributions and some experimental data demonstrating 
these relationships are then presented. 

3.        Farfield Relationships 

3.1      FLEXURAL VIBRATION OF A BEAM 

The dynamic bending strain for flexural vibration of a beam is related to the transverse 
velocity at the same location by a frequency-independent constant K^c^ if the evanescent 
wave components are neglected. Dividing the farfield dynamic strain at position x and 
frequency/, lFF(x,f) = ym*

2(A, e'ikx + A2 eikx), by the farfield velocity at the same location 
and frequency, vFF\xJ) = i2nf(Ale~lkx + \2e

ikx)> and expressing in terms of mean-square 
values, yields 
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i2nf) 

K. \2 
■shape 
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where Kshape = y„JÄfl is the non-dimensional geometric shape factor, the subscript FF 
denotes farfield conditions where evanescent waves can be neglected, ym is the distance of 
the outermost fibre from the centroidal axis, k is the wavenumber, i is y[-l, the A3 are 
complex constants which vary with frequency, cL = ]/Elp is the longitudinal wave speed, A 
is cross-sectional area, and / is the area moment of inertia. The frequency independent 
constant is a function of only cross-sectional geometry K^ and the longitudinal wavespeed 
cL. The value of ^^ is equal to \/3 for solid rectangular beams, and lies in the range of 72 
for a very thin walled hollow bar to 2 for a solid circular bar. 

3.2      FLEXURAL VIBRATION OF A PLATE 

Using the propagating wave components of the travelling wave solution for flexural 
vibration of plate, and dividing the farfield dynamic bending strain components S^ and 5y>FF 

by the farfield velocity % gives 

ZXiFF(xJ) _ yTO^cos26 -iK. shape 

vFF(xJ) ilnf 
cos26 

and 

%iFFixJ) _ ymkBsin2Q _ 

vFF(x,f) i2nf 

iK. shape sin2e, 

(2) 

(3) 

where K^^ is a non-dimensional geometric shape factor (which equals 73 independent of 
plate thickness) and cL is the longitudinal wavespeed for a plate given by cL - \jElp(l-]i2). 
These relationships are the same as for the flexural vibration of a beam except that for plate 
vibration there are two components of dynamic bending strain which are also a function of 
the direction of wave propagation. Since the dominant direction of wave propagation varies 
from one frequency to the next and is generally not known from vibration measurements, 
exact predictions of dynamic bending strain from velocity using the above relationships are 
not possible. 

If the dynamic bending strain component sum ^ +Cy>FF is related to velocity (in place of 
the individual components of dynamic bending strain), the frequency independent 
relationship 

<(Z,x,FF(x/)+Zy<FF(xJ))2> = 

<v2
FF(xJ)> 

yJn 
2\2      / 

ilnft 

K. \2 

shape 
(4) 

results, where ^^=73. This relationship is equivalent to the farfield relationship between 
dynamic bending strain and velocity for beam flexural vibration. It is independent of plate 



thickness and the direction of wave propagation. Since the sum of dynamic bending strains 
provides an upper bound limit on dynamic bending strain (5„UX,FF < £X,FF 

+ 5y,FF )> estimates 
of dynamic strain from Equation 4 provide an upper bound for predictions of fatigue life. 
Equation 4 should, as a minimum, find use for first pass vibration screening of flat plate 
structures. 

3.3      VIBRATION OF CYLINDRICAL SHELLS 

For the case of cylindrical shell vibration it is necessary to consider in-plane motions in 
addition to out-of plane motions. To permit the relationships between dynamic strain and 
velocity to be expressed in terms of only the readily measured out-of-plane motions, the in- 
plane wave amplitude coefficients Vm and Vm are eliminated from the travelling wave 
equations for dynamic bending strain and velocity by substituting the characteristic wave 
amplitude ratios tt^VJWn and ^m=VJWv. Hence, 

5=1 

Kr* ^e/) = j;vvc«(ii8) 1 

5=1 R2+Rz) 
{R+nh + nR^ + nz^} (6) 

and 

vn(x,QJ) =i2n/£Wnscos(ne)e 
kn? (7) 

5=1 

where \x is the axial dynamic bending strain, Se is the circumferential dynamic bending 
strain, v is the transverse velocity and the only unknowns are the out-of-plane wave 
amplitude coefficients Wm. Only axial and circumferential dynamic strains are considered 
since the shear strain is zero at angular positions where the axial and circumferential dynamic 
strains are largest. Maximum dynamic strain occurs at z=±ym. 

Farfield relationships derived in this sub-section are expressed in the non-dimensionalised 
form 

KFF(f) = 
s, <FFCL 

vFF 

yJa 
2-Kf 

CL  ~   ^shape' (8) 

where Kw is the non-dimensional farfield correlation ratio. Substituting Equations 5, 6 and 
7 into Equation 8 for axial waves 5=1,2 with the lowest cut-on frequencies, the farfield 
relationships between dynamic bending strain and velocity for cylindrical shell vibration are 
given by 

FF.axial.ns^- 
V (f\= "tx,ns  L %5ttii5    Z^ns 

i2nf 
(9) 

and 
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These relationships for the components of dynamic bending strain are a function of the 
direction of wave propagation and it is necessary to relate the sum of dynamic bending 
strains to velocity in the same way as for flexural vibration of a plate (Equation 4). The 
resulting relationship between the sum of dynamic bending strains and velocity is plotted in 
Figure 1 for w=1..3. The ratio of farfield dynamic strain to velocity is bounded and 
essentially frequency independent for vibration of circumferential modes w*3, and the 
vibration of circumferential modes w=l and w=2 at frequencies above the ring frequency 
(refer Figure 1). 
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Figure 1. Non-Dimensional Farfield Correlation Ratio for Cylindrical Shell Vibration 

The relationship between the propagating wave components of dynamic strain and velocity 
plotted in Figure 1 does not consider the effects of additional propagating waves that cut-on 
at higher frequencies. To calculate these effects it is necessary to revert to the use of 
numerical calculations of the vibrational response for actual cylindrical shell systems. The 
results of investigations undertaken for a clamped cylindrical shell are that the pairs of axial 
waves which cut-on at the lowest frequencies for each circumferential mode n dominate the 
response at all resonant frequencies, with the result that the non-dimensional correlation 
ratio in Figure 1 also applies at higher frequencies where there are additional pairs of 
propagating waves. Only a small increase in the non-dimensional farfield correlation ratio 
of approximately five per cent is required to take these additional propagating waves into 
account. 



3.4      GENERALISED FARFIELD RELATIONSHIP 

The resulting generalised farfield relationship between the dynamic strain and velocity at the 
same position for flexural vibration of beams, plates and cylindrical shells is given by 

<&fc/>> = 
KFF 

CL 

<vifc/)>. (H) 

where W^FF+^JF 
f<>r P1**^ SFHX.FF+^FF for cylindrical shells, K^ is defined as the 

farfield correlation ratio, and the non-dimensional farfield correlation ratio Kn is equal to 
K^ for beams and plates. Since Kw is frequency independent for beams and plates, and is 
approximately frequency independent and bounded for cylindrical shell vibration, the 
relationship in Equation 11 between farfield dynamic strain and farfield velocity is also 
frequency independent. Values of Kw for beams, plates and cylindrical shells are summarised 
in Table 1. 

TABLE 1. Non-Dimensional Correlation Ratios between Dynamic Strain and Velocity 

Kff K ÄyJT 

Beams ^3 2.3 2.46 
Solid rectangular bars 
Pipe, wall thickness up to Schedule 80 

Beams 2 2.65 2.84 
Solid circular bars 
Pipe, wall thickness above Schedule 80 

Plates ^3 2.3 2.46 

Cylindrical Shells ^3.5 2.0 2.0 

4.        Estimation of Maximum Dynamic Strain from Velocity 

The objective of the present work is to develop relationships for estimating the spatial 
maximum dynamic strain in simple structures from the measured or calculated velocity 
response. The farfield relationship in Equation 11 provides exact estimates of dynamic strain 
from velocity at the same position in farfield regions, and can be used to determine the 
spatial maximum farfield dynamic strain ^pp in each frequency band. This involves 
measuring or calculating the spatial maximum farfield velocity v^n? in each frequency band 
and evaluating Equation 11 for ^FF- 

The farfield relationship in Equation 11 does not, 
however, apply in nearfield regions due to the different effects of evanescent waves on the 
propagating wave components of dynamic strain and velocity (Karczub[6]) preventing the 
direct application of farfield relationships to the estimation of maximum dynamic strain. In 



this section, expressions for the estimation of maximum dynamic strain from velocity that 
take into account the complicating effects of evanescent waves are derived from the farfield 

relationship in Equation 11. 

4.1      EVANESCENT WAVE EFFECTS 

The general effects of evanescent waves are to increase the spatial maxima of dynamic strain 
and velocity above their spatial maximum farfield levels at different locations and by 
different amounts. The different effects of evanescent waves on dynamic strain and velocity 
are due to the opposite phase of evanescent waves in the travelling wave solutions dynamic 
strain and velocity. Spatial distributions demonstrating these effects are plotted in Figure 2 
for the resonant vibration of a transversely excited clamped beam, and in Figure 3 for the 
resonant vibration of a clamped cylindrical shell. The effects of evanescent waves are shown 
by overlaying spatial distributions of the propagating and evanescent wave components of 
the response. Velocity is plotted in these figures as predicted dynamic strain calculated from 
Equation 11 using velocity in place of the farfield velocity. It should be noted that in the case 
of cylindrical shell vibration there may be additional pairs of evanescent waves that have 
short wavelength and produce larger levels of dynamic strain concentration than in a beam. 
Dynamic strain concentration is defined as the increased dynamic strain at a boundary or 
discontinuity due to evanescent wave effects (Ungar[7]). 
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Figure 2. Spatial Distributions of the Dynamic Strain and Velocity Response in a Clamped Beam 
(— Strain; — Predicted Strain; - - - Farfield Strain; - - - Nearfield Strain) 

4.2      CORRELATION OF SPATIAL MAXIMA 

The generalised farfield relationship between dynamic strain and velocity in Equation 11 
provides an exact relationship between the spatial maxima of dynamic strain and velocity in 
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Figure 3a. Dynamic Strain and Velocity in a Clamped Cylindrical Shell 
(_ Axial Strain; -— Circumferential Strain; Predicted Strain) 
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Figure 3b. Propagating and Evanescent Wave Components of Axial Dynamic Strain 
in a Clamped Cylindrical Shell 

the absence of evanescent waves which is only slightly modified by evanescent wave effects 
when the complete response is considered. Evaluating Equation 11 at a position x^n? 
where the propagating wave components of both dynamic strain and velocity attain their 
spatial maximum levels gives 

ZmoxFF^f) W^max.FF'/) ^ 

vmaxJ'F 

'»FF'-Amax,FF' 

W VFF(Xm«JF'/) 

VFF (12) 

where ^pp is the predicted maximum farfield dynamic strain and KFF/cL is the farfield 



correlation ratio as before. Evanescent wave effects are taken into account by incorporating 
factors for the increases in dynamic strain and velocity levels above maximum farfield levels. 
If E (f)ll **(f)is the increase in maximum dynamic strain above the maximum farfield 
dynamic strairi and vmax(/0/vmax FF(f) is the increase in maximum velocity above the 
maximum farfield velocity, then the ratio of maximum dynamic strain to maximum velocity 
is given by 

JaJD      Kjm^rrV) KFF _ K'jfYK^ ^ 
vmax(/) "  vmax(/)/vmaxFf(r)   cL cL 

where 

gif) = ^^^^^FF^ (14) 

The factor K'(f) represents the increase or decrease in the non-dimensional farfield 
correlation ratio K^ due to the effects of evanescent waves on the dynamic response. 

The relationship in Equation 14 states that the maximum dynamic strain in a structure is 
related to the maximum velocity by the farfield correlation ratio K^lc^ and a frequency 
dependent factor, K'if). Defining 

K(f) = K'(f)KFF, (16) 

the ratio of maximum dynamic strain to maximum velocity is re-expressed as 

Sm.*(/) = KC/^ (17) 

vmaxtf)        cL' 
where K is defined as the non-dimensional correlation ratio between dynamic strain and 
velocity. 

In cases involving high frequency vibration, it is more practical to rely on measurements of 
the spatial maximum farfield velocity rather than the spatial maximum velocity as it is more 
readily measured and provides conservative estimates if the spatial maximum velocity is 
detected instead of the maximum farfield velocity. Correlating the spatial maximum dynamic 
strain with the spatial maximum farfield velocity at frequency/gives 

UV) 
k Snax,FFV ' t 

KFF    K'ppU^Kpp      KvFF(f) (17) 
CL CL Cl 

where £vFF is the non-dimensional correlation ratio between dynamic strain and farfield 
velocity. 

4.3      NON-DIMENSIONAL CORRELATION RATIO 

The non-dimensional correlation ratio defined above is a frequency dependent factor but is 
found to be frequency independent for the flexural vibration of simple beams, and 
approximately frequency independent and bounded for the resonant vibration of plates and 



cylindrical shells (refer Table 2 for the case of thin plate flexural vibration). Calculated data 
for a beam (Karczub[6]), and the experimental data in Section 5 for plates and cylindrical 
sheUs, also supports the application of the same frequency independent non-dimensional 
correlation ratios to vibration at non-resonant frequencies. Frequency independence is an 
essential property as it permits estimates of maximum dynamic strain to be obtained without 
consideration for the frequency of vibration; in particular, this permits the estimation of 
maximum dynamic strain using strain-velocity relationships to be applied directly to the 
multi-modal and broad-band vibration of resonant structures. 

TABLE 2. Non-Dimensional Correlation Ratios for Clamped Plate Vibration 

m n /m,n e K 

1 1 51.5Hz 57.6° 1.95 

2 1 83.8Hz 37.1° 1.91 

1 2 125.3Hz 71.8° 2.21 

3 1 138.1Hz 26.2° 2.11 

2 2 154.8Hz 56.3° 1.97 

3 2 205.6Hz 44.4° 1.74 

4 1 212.4Hz 20.0° 2.20 

1 3 236.6Hz 77.4° 2.28 

Values of £ and £vFF to be used with Equations 16 and 17 for the estimation of maximum 
dynamic strain in beam, plate and cylindrical shell structures are given in Table 1. These 
values can be used in practically all cases except for the low frequency vibration of 
structures containing concentrated masses and vibration of a system below the first natural 
frequency. The non-dimensional correlation ratio is significantly increased in these latter 
cases resulting in non-conservative predictions if the factors in Table 1 are erroneously used. 

4.4.     OVERALL MEAN-SQUARE RESPONSE LEVELS 

Conservative predictions of the maximum overall mean-square dynamic stain are obtained 
by constructing a spectrum of maximum predicted mean-square dynamic strain in each 
frequency band./, from Equation 16 or Equation 17, and then summing the mean-square 
values in each frequency band: 

<f2   > * Y<?   (/)>. (18) '»max is    "»maxVi / 
hi 

Equation 18 is accurate in cases where the maximum dynamic strain in each frequency band 
occurs at the same location for all frequencies/. For systems that do not have maximum 
dynamic strain at the same location at all frequencies this approach provides a conservative 
upper-bound prediction of the maximum overall mean-square dynamic strain. 



5.        Experimental Results 

Experimental results for the prediction of dynamic bending strain from velocity in narrow 
frequency bands are presented in Figure 4 and Figure 5. The results in Figure 4 are for the 
flexural vibration of a clamped plate and represent the predicted maximum dynamic strain 
and the maximum measured dynamic strain along a line normal to one of the clamped 
boundaries. The maximum overall predicted dynamic strain was 65dB and the measured 
overall dynamic strain was 65.1dB. The results in Figure 5 are for the vibration of a 
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Figure 4. Measured and Predicted Dynamic Strain Autospectra at the Clamped 
Boundary of a Fully Clamped Rectangular Plate (-■- Measured;-o- Predicted) 
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Figure 5. Measured and Predicted Dynamic Strain Autospectra in a Cylindrical Shell 
(_«_ Measured Axial plus Circumferential Strain; -a— Predicted Strain) 



cylindrical shell and represent the predicted dynamic strain and the measured dynamic strain 
at the same location. The measured dynamic strain was obtained by measuring the axial and 
circumferential strains and then adding the autospectra for these two measurements. The 
overall predicted dynamic strain was 57.2dB and the measured overall dynamic strain was 
58.4dB. In both cases there is very good agreement between measured and predicted. 

6.        Conclusions 

The main conclusion of this work is that there exists largely frequency independent 
relationships between dynamic strain and velocity which (i) have a firm theoretical and 
physical basis, (ii) are the same for beams, plates and cylindrical shells, and (in) can be 
applied in a consistent manner to the narrow-band, multi-modal and broad-band vibration 
of simple structural elements in the low-, mid- and high-frequency ranges. These 
relationships can be used with measured, calculated or Statistical Energy Analysis 
determined vibrational velocity data to obtain narrow-band and overall estimates ot 
maximum dynamic strain. The accuracy of the method is supported by theoretical and 

experimental data gathered to date. 
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Abstract. The case where one structural member of a structure experiences a dynamic 
instability is studied. The principal regions of instability of a member is shown to 
depend very strongly on the axial vibration in the structure. Its boundary turns out to be 
very complicated if the frequency band of the instability zone contains many resonant 
modes which are very sensitive to fabrication and assemblage details. Two variants of 
the frequency averaging are proposed. Phase averaging across a small frequency band of 
each resonant mode of axial vibrations yields a smooth interior approximation to the 
instability zone. An energy-based averaging results in an external envelope. The latter 
may be viewed as a stability chart of a structural member in an engineering structure in 
which one has confidence. 

1. Introduction 

The case where one structural member of a structure experiences a dynamic instability is 
addressed. It is customary to analyse the stability of a mechanical component alone and 
to ignore its mechanical environment. The exceptions are aeroelasticity and fluid- 
structure interaction. However, even in these theories the interaction of a structural 
member with other structural members is ignored and only the interaction with fluids or 
gases is considered. Nevertheless it is intuitively clear that the influence of the whole 
structure on the stability of its particular component may be considerable. 

In the present investigation we restrict ourselves to the mutual interaction of 
components in a complex structure. The main intent of the present study is to reveal the 
regions of dynamical stability of a structural component and to analyse the influence of 
the structure on the dynamic stability of the component. 

The paper is organised as follows. The boundary value problem governing the 
interaction of the local dynamics of a potentially unstable structural member and the 
overall structure's dynamics is derived in Part 2. By using the Galerkin approach the 
partial differential equation governing the beam buckling reduces to an ordinary 
differential equation which is similar to the Mathieu equation. A simple closed form 
expression for the boundaries of the principle instability zones is derived. Results of 



numerical computations are presented and discussed in Part 3. The influence of the large 
vibrating structure on the stability of a particular component is shown to be 
considerable and it changes drastically the stability chart of the component. It is shown 
that the boundaries of the instability zone are very complicated. Besides, they are fuzzy 
because of the structural parameters' uncertainty. For this reason, a phase average and an 
energy-based average over the fast variable are performed in Part 4. It is shown that the 
energy-based average which is similar to that of the Statistical Energy Analysis yields 
an external boundary of the instability zone in which one has confidence. 

2. The governing equations of the problem 

We model a potentially unstable component by a simply supported Bernoulli-Euler 
beam on which a periodic force P(t) = P0 + Pt cos aw is imposed at the end x=l, cf. Fig. 

1. At the end x=0 the beam is attached to another structural member or an extended 
structure which is assumed to be dynamically stable, i.e. it does not exhibit any lateral 
instability. 

unstable beam 

w(x, t) -$? + ffCOSOM 

x=0 x=l 

x=o X=L 

Figure 1. Schematic of the problem 

Taking into account the terms describing the geometrical nonlinearity up to quadratic 
included results in the following nonlinear partial integro-differential equations for the 
beam vibrations (for details see Bolotin, 1964) 

.32«      „ d2u 

äx 
dw a3 w 

dx« 

0 i 

EF- — 
dx dx 

K a^aH aw ctE,,0<x<l 

d2w 
+ pF^- = 0   ,0<x<l 

dt2 

(1) 

(2) 

Here £7 and EF are the flexural and axial rigidities, respectively, u and w are the axial 
and lateral deflections, respectively, p is the mass density and F is the cross-sectional 

area. Equation (1) describes the axial vibration of the beam while eqn (2) describes the 
bending vibration. The beam is assumed to be undamped. 

As the boundaries of the instability zones are sought, one can neglect the non-linear 



terms in the right-hand side of eqn (1), cf. Bolotin (1964), to obtain the following 
equation for the longitudinal vibration in the beam 

ox2   a
2dr2       '      VP 

where a is the velocity of sound. The longitudinal vibration in the structure is governed 
by the following differential equation 

(,    ad\d2U     1 d2U   .    A   „   . (4) 

\      dthx2  A2 dt2 

where U(X,t) is the axial displacement in the structure, and A is the velocity of sound in 
the structure. To account for material and structural damping in the structure, we assume 
the Kelvin-Voigt constitutive law, i.e. we introduce a viscosity by means of an viscous 

damping operator ß IL . More sophisticated Theological model is not required since 
at 

harmonic vibration is considered. In what follows the capital letters are referred to the 
structure whereas the small letters to the beam. Boundary conditions and the conditions 
of the beam-structure interaction are given by 

X = 0,   U = 0;   x = l,    -Cy = P0 + Pte
m (5) 

* = 0,X = L,   um = U[L),    C(l + ß|)f = c| <® 

where c=EF and C are the axial rigidities of the beam and the structure, respectively. 
Solution of the boundary value problem, eqns (3)-(6), is given by 

W0.«$4£«te-$X;  A-        " sinAL*        CA '        A/TTiß^ (7) 
P P 

u(x,t) = (Hcosfoc + Gsm7tf:)em x--^-L; X. = — 

where A. and A are wave numbers of the beam and the structure, respectively. The 
expressions for H and G are as follows 

„-lp —<Jl + ißco cotanALco    Pt 
^_  f  Q_     

r __==    (8) 
r sin A/ - R-J1 + ißtocotan AL cos 7d '      r sin Td-Rjl + ißco cotan AL cos W 

where r=ma andR=MA are the impedances of the beam and the absorber, respectively. 
Substituting eqn (7) into eqn (2) yields the following equation for the bending vibration 
in the beam 

EI^ + pJ-^ + EFX^-((Hsm)u-GCoShc)^-)ei(at + pA^ = 0       (9) 
at4       ftr «"V ox) $r 



3. The principal instability zone of the beam attached to the structure 

In order to define the principal zone of instability we assume w{x,r) = (p(x) q(t) where 

the fundamental function  (p(x) = sin -j-  is the first vibration mode and the static 

buckling form of the beam alone. We multiply eqn (9) by q> (x) and integrate along the 
length of the beam. The result is the following ordinary differential equation for the 
generalised coordinate q(t) 

^ + a7{l+2Vi<l>{a)eia*]q = 0 00) 
dr 

Here the natural frequency of the bending vibration of the axially compressed beam fl, 

the first critical load Pc and dimensionless magnitude of the external force jx are as 

follows 
V*-Pc~Po K ^t /-in 

, rc-ci   - ,  \i.-„[p    p , v rf-(iT p/r    • 'c-"/2.  ^   2{PC-P0) 

Function <D((o) is given by 

*,  >    2 1 
/ r sin X/ - R<J 1 + ißo> cotan AL cos Xi 

t 

I [r sin Xx - Ä^/l + ißco cotan AL cos Xx] cos -r- 
o 

[r sin Xx - R-J1 + i'ßü) cotan AL cos Xx] cos -r- dx (12) 

(13) 

which after the evaluation of the integral takes the following form 

4 sin — yip _ 2jt2 r sin y - ityl + ißcü cotan AL cos y 

"i*0)88     u     Jl2/2_4jt2 r sin X7-/?v
/l + ißoo cotan AL cos X7 

We intend to analyse the conditions under which the dynamic buckling of the beam 
occurs and obtain the boundaries of the principal zone of instability. To this end we 
rewrite eqn (10) in the form of the Mathieu equation 

& + n2{l+'2Vi\<b{G>)\ei(<üt + sr&*tdn]q = 0 (14) 
dr 

The first approximation to the boundaries is known to be determined by means of the 
following substitution, cf. Bolotin (1964) and Roseau (1987) 

,.         .  (Of + arg *{<o)             0M + arg <&((ü) n« 
q{t) = q1sm ±-L-L + q2cos ° U3) 

which leads to the following equations for boundaries of the principal zone of 
instability, see Bolotin (1964) and Roseau (1987) 



Cü = 2*Vl±|<I>(ü))|^ (16) 

The latter equation expresses a certain dependence between the frequency and the 
magnitude of the external axial force which is known to be the boundary of the principal 
zone of instability. The case | <D(co) | = 1 corresponds to the boundary of the 

conventional principal instability zone of the Mathieu equation, cf. Bolotin (1964) and 
Roseau (1987). The function C»(ü)) reflects therefore the influence of the longitudinal 

vibration on the instability chart of the bending vibration. As  |<I>(o))|   can vary 

arbitrarily (e.g. it can be very large or very small) the stability chart of the beam 
changes drastically. Hence, the influence of the vibrating structure on the stability chart 
of a component may be very considerable. 

To begin with, the main instability zone of the beam alone without longitudinal 
vibration in shown in Fig. 2. The boundaries of this zone are obtained from eqn (16) 
under the assumption | G>((a) | = 1 . 
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Fig.2. The principal instability zone of the beam alone 

Another limiting case is obtained if one assumes that the structure is a rigid body, i.e. 
R = °°. In this case only the longitudinal vibration of the beam alone affects the 

instability zone. Substituting R = *» into eqn (13) delivers the following expression for 

2tanWX2/2-2ji2 

4(<B) = - 
W     X2l2-4n2 

(17) 

which coincides with the known results of Bolotin (1964). The main instability zone is 
shown in Figure 3. 
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Fig.3. Influence of the axial vibration on principal instability zone of the beam 

4. Phase averaging and energy-based averaging 

Function <&(©) takes into account effect of the interaction of axial vibration in the 
structural members. It is a rapidly changing function of frequency if the frequency band 
of the parametric resonance contains a number of resonant terms. Provided the structure 
is very large compared with the beam the modal density of the structure may be rather 
high in the frequency domain of the local parametric resonance of the structural member. 
Figure 4 shows  |4>(o))|   for following non-dimensional parameters of the model: 

ßn = 10" 3, j = 1.94, j j = 221, ^ = 1 . In this case the boundary of the instability 

zone turns out to be very complicated as Fig. 5 displays. 
When the structure has a high modal density then <D(co) contains  two scales: slow 

variables X/ and (o and a fast variable AL. It seems reasonable to average the function 
with respect to the fast variable, i.e. across a small frequency band of each resonant 

mode of axial vibrations. To this aim, one can replace * by a smooth function <t> 
which is obtained by means of the phase averaging with respect to the fast variable 
z = cüL/i4 

11 
4 sin 

<D(Q))^- 
2 X2l2-2n2 

U JA2_47C2 27I 

r rsin-^-/?Vl + tßcücos-5-cotaru  /.   •» i_       2   v   H    2    ynip^j& 

J rsinM-RJl + tßci)cosA/cotan|   .—_—I 
0 v \Vl+ißcoJ 

(18) 



Fig.4. Absolute value of fl> versus frequency 

Fig. 5. The principal zone of instability of the beam attached to the structure. 

The averaging sounds reasonable in view of the fact that the structural details, material 
and fabrication imperfections as well as the boundary conditions are uncertain, i.e. the 
eigenfrequencies and the places of the resonance peaks are uncertain as well, cf. Fahy 
(1994). Integral (18) allows analytic evaluation, cf. Gradsteyn and Ryzhik -(1980), to 
give 



<&(<o) = 
4sinTx¥-2n

2 

2% W   ^2,2 _ 4n2 r2 sin2 x; + ä2
(i + ,ßo)) cos2 W 

,   /tyl + ißco    .   .. 2TC 
1 —- —- cotan Ai tan  , 

W, r/^/1 + ißco sin-y ln- 
/^        2      2TC . / 1 + tan"   ,    .„ 

-7====< r2 sin W sin -=-+/?( 1 + ißco) cos W cos -=- > 

V^l + ißp) 

(19) 

The result of the computations is displayed in Fig. 6. One can see that the phase average 
with respect to the fast variable delivers a smooth internal boundary of the principal 
zone of instability. 
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Fig. 6. Phase-averaged boundary of the principal instability zone. 

As eqn (16) which determines the boundaries of the instability zone requires only the 
absolute value of 4> , i.e. | <&(co) |, another possible average is an energy-based average 

with respect to the fast variable 
2n 

|ö|=i/^i*i*dz (20) 

where z=(nL/A is the fast variable. An explicit expression for | * | is as follows 



* = 
4 sm- \l2l2-2n2\ 

W X2l2-4n2 
(21) 

2JC  11/ l /   
r sin -=- - Ä^/1 + ißo) cos -y cotan(zA/l+iß(ü) 

2itJ    | rsinW-/?Vl + /ßi 0) cos W cotan(zA/l+jßco) 

Estimation of the integral (21) yields 

*=- 
smT U2/2-2n2|     I Bb + Kk 
W \-K2l2-An2\\l  b2 + k2    2sjy2-b2-k2 

where the following denotations are made 

6 = -2-cotanW, )k = ^T(l + /ßco)cotan2W -l;r = Im 
Vl+lßw 

>0 

y = | 1 + -y (1 + ißco) cotan* A/ cosh ——— + 2 — cotan W smh —— r 

dz 

(Y_y{Bb + Kk)\ 

[        b2 + k2   J    (22) 

(23) 

The result of the numerical work is shown in Fig. 7. One can see that the latter 
estimation can be viewed as an external smooth border to the inherently complicated 
principal zone of instability in which one has confidence. 

r.4 n 

Fig.7. Energy averaged boundary of the principal instability zone 



5.   Conclusions 

The original principal zone of instability and two smooth approximations are shown in 
Fig. 8. 

Fig.8. The principal instability zone together with its internal and external envelopes 

The phase average may be viewed as an internal smooth envelope of the instability 
zone. This envelope is informative in that regard that the interior of this envelope 
contains unstable unbounded solutions. The energy based average is of crucial 
importance since it delivers a smooth external boundary of the inherently complicated 
principal zone of instability. This external boundary is not sensitive to uncertainties in 
engineering structures that is it should be viewed as the practical boundary of the 
principal instability zone in which one has confidence. The domain between the above 
smooth approximations is very specific. One can guarantee neither stability nor 
instability of the beam there. The study of this domain remains to tackle. 
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1.    Abstract 

In the application of the statistical energy analysis (SEA) it is commonly assumed that 
the external input power is independent of the coupling between an externally driven 
structure (a master structure) and an attached passive structure (an adjunct structure). It 
is argued that although this assumption may be reasonable for weak couplings and, 
with some reservation, for strongly coupled similar structures, it may be incorrect for 
strongly coupled dissimilar structures. The definitions of similar and dissimilar coupled 
structures, in this context, are explained. The implication to SEA of this dissimilarity 
in strongly coupled structures is discussed in the light of developing noise control 
criteria for complexes that are composed of these coupled structures. 

2.    Introduction 

It has been customary, when using the statistical energy analysis (SEA) to derive the 
response (stored energy) of a complex composed of coupled structures, to assume that 
the couplings among the structures do not influence the external input powers. In this 
sense, the external input powers, injected into the structures in isolation, are assumed 
to be invariants when couplings are instituted. This assumption initially simplified the 
analysis and subsequently its validity was not challenged, presumably a matter of 
"letting sleeping dogs lie". Indeed, as long as the couplings could be considered "weak" 
the assumption felt comfortably valid. Questions regarding the validity of the 
assumption arise only when "moderate" and, especially, "strong" couplings are brought 
in as a possibility. Chandiramani and Smith attempted to account for changes in SEA 
as some of the couplings transit from weak to strong [1,2]. A major finding, in both 
efforts, is the convergence of the modal stored energies among those structures that are 
strongly coupled; as the couplings become stronger in these structures, there is a 
convergence toward equipartion of modal stored energies. In other words, as the 
coupling between two structures is increased, the coupled structures tend to merge and 



the stronger the coupling the more complete is the merger. In both papers, however, 
the influence, that the changes in the couplings may induce on the external input 
powers, is neglected apriori [1,2]. This neglect is examined in this paper; not 
rigorously, but, rather, heuristically. It is argued that for couplings among "similar" 
structures the external input powers are not dependent on the strength of the couplings. 
However, for "dissimilar" structures the external input powers are dependent on the 
strength of the couplings and there may then be a significant difference between those 
external input powers pertaining to weak and those pertaining to strong couplings. 

3.    Rudimentary Statistical Energy Analysis (SEA) 

The steady state equation of SEA for a complex composed of multiple coupled 
structures is 

© rj(o)) E(to) = ne(co)    ;    E(co) = {Ea(co)}    ;    ne(co) = {nea(co)}    ; 

fö = (C08aß)     J     ll(C0) = ([ZTlYa(ö>)]8aß-T1aß«ö)(l-8ap))      > (la) 

where (to) is a center frequency of a frequency band of width (Aco), T|aa((ü) is the loss 
factor associated with the (a)th structure, T|.ya(a>) is the coupling loss factor associated 
with the attachment of the (cc)th structure to the (y)th, Ea(co) and nea(co) are the 
stored energy and the external input power; in and into, the (a)th structure, 
respectively, and 5aR is the Kronecker delta. Significantly, Eq. (la) is proper in the 
sense that T|(co) is a functional only of parameters that define the complex; it is 
independenPof the elements of the stored energy vector E(co) and of the external input 
power vector ne(co). [Propriety is an essential ingredient to any successful analysis; 
for this reason many of the quantities and parameters involved are often tested for 
propriety.] The modal SEA quantities and parameters that are implicitly stated in Eq. 
(la) are 

Ea(ü>) = Acona(CD)ea((a)   ;   nea(co) = A(önoc(co)7Cea(co)    ; 

ftaß(<ö)/Tlßa(<ö)] = $©) = [n«(co)/np(a))] = [^(ü))]"1     , (2) 

where na(to) is the modal density, ea(co) is the averaged modal stored energy and 
rcea(cu) is the averaged modal external input power, all in reference to the (<x)th 
structure [3]. The averaging is either over the frequency within the bandwidth (ACö) or 
over an ensemble of complexes with differences that lie within that same bandwidth [3]. 
Since the "loss factor matrix" r)(co) is, by definition, nonsingular, Eq. (la) may be 
inverted ~ 

E(to) = |(co)(fö)'1 ne(co)     ;     |(co) = (^p(co)) = [ri(to)]"1      .       (lb) 

The inverted loss factor matrix £(co) may be dubbed the "gain factor matrix". Clearly, 
Eq. (lb), like Eq. (la), is significantly proper. From Eq. (la) one obtains 

EtOTiaa(to)Ea((o) = ne(co)    ;    ne(co) = Z n^co)    , (3a) 
a a 



which simply expresses the equation of conservation of energy; it states that the 
dissipated power in the complex; [(orjaa(co)Ea((o)] in the (a)th structure, is equal to 
the external input power into the complex; [nea(<o)] into the (a)the structure. 
Similarly, from Eq. (lb) one obtains 

E««D) =Z^(<»)      J     El«D) = Say(<0) [^(ü))/©]      , (3b) 
which simply accounts for the contributions, to the stored energy Ea(co) of the (a)th 
structure, by the external input powers into the various structures that compose the 
complex; e.g., EI(CO) is contributed to Ea((0) by the external input power [ne^(co)] 
into the (y)th structure. 

An "effective loss factor" r|e(co) may be defined in the form 

(Drie(co)E(co) = Zcf)TiQa(ö))Ea((o)      ;      E(co) = Z EJco)     . (4a) 
a a 

In this form T|e(co) is a measure of the ability of the complex as a whole to dissipate 
the stored energy E((0) in it [3-5]. Casting Eq. (4a) in the algebraically manipulated 
form 

Tle(o» = [2 W«) EB(«) / ZEp(co)]     , (4b) 
a ß 

interprets the effective loss factor T|e(co) to be the "average loss factor"; averaged over 
the stored energies of the structures comprising the complex. Similarly, an "effective 
gain factor" £ea(G>) is defined in the form 

^«0) [ne«o)/co] = I ^(o) [ney(co)/ca] (5a) 
Y 

In this form Sea(t°) is a measure of the transfer of energy from the external input 
powers to the (a)th structure. Casting Eq. (5a) in the form 

^ea«a) = neY«u)[z^y((o)neY(co)/snep(G))]     , (5b) 
Y p 

interprets the effective gain factor ^«(co) of the (<x)th structure to be the "average gain 
factor" of that structure; averaged over the external input powers of the structures 
comprising the complex. From Eqs. (3a) and (4) one obtains 

cone(co)E(co)= II^oo)       ;      ru«o) = [ne(co)/(DE(ü>)]     , (6a) 

and from Eqs. (3b) and (5) one obtains 

Se„(a» [ne(©)/a>] = Ea(a>)     ;      $ea(a>)= [co Ea(a»/ne(co)]     .(6b) 

From Eqs. (6a) and (6b), the identity 

Tie«*» = Ke(W)]"1        J §e«D)  =  I^W , (7) 
emerges. a 

As usual, for good and bad reasons, a complex consisting of merely two structures 



is chosen to demonstrate the notions and concepts that lie within SEA and to illustrate 
results obtained by rendering SEA to such a complex. A SEA model of a two- 
structures complex is depicted in Fig. 1; one structure is designated the (s)th structure 
(the master structure) and the other the (b)th structure (the fuzz in a structural fuzzy) [4- 
6]. A question is then posed: May an externally driven structure (the (s)th structure) be 
adjoined by another (the (b)th structure) in order to improve the noise control integrity 
of the union; e.g., by increasing the effective loss factor T|e(<ö) of the combined 
structures beyond that of the initial structure? For the two-structures complex Eq. (4b), 
after straightforward algebraic manipulations, yields 

r|es«o) = [Tle(a»Al„«o)] = D +1£«»» £ (»)] [1 + d(ö»]"        ; 

Tls(to)=hbb«ö)/ilSs(ö»]    ;    d«ö) = [Eb(to)/Es((0)]      • (4c) 

Using Eq. (4c). Fig. 2 is presented. In this figure values of r|es(ü)) are depicted as a 
function of r|s((B) and £s(co). It is revealed that for a practical range of 
{r|s (co), £s (co)} there exist a region in which T|es(co) exceeds unity, notwithstanding 
that in another region, T|es(co) is less than unity. The region in Fig. 2 for which 
Ties (to) > VlÖ, establishes a set of criteria that needs to be satisfied by parameters that 
define the two-structures complex to affirmatively answer the question posed. 
However, as argued in Reference 4, that T|es(co) exceeds unity may be a necessary, but 
is not a sufficient condition for achieving an effective noise control. To achieve and 
effective noise control a more comprehensive analysis, than that involved in the 
determination of T|es(co), is required 

4.    Stored Energy Ratios in Noise Control Criteria 

To examine more comprehensively the noise control criteria it is convenient to model 
the complex in terms of unattached structures. Whereas Eq. (1) is the insitu description 
of the complex, the equation of SEA for a complex in which the structures are 
artificially, but appropriately, isolated from each other is 

co. jAco) E°(co) = Oe(co)    ;    E°(co)={E°(co)}    ;    n°(co) = {n°0(co)}    , 

Ö = (ö)5aß)    ;   Ji0(co) = (ri«a(co)5ap)     ; (8a) 

or invertedly 

E°(a» = |0(co)fö-1 Oe(co)  ;  |°(co)= ($L(to)8op)   ;   £°(«» = [jaW   •  <«>> 

A typical equation of motion for a structure may be selected from Eq. (8). It reads 

coC(co)Ea(w) = r&(co)    ;    E^(co) = ^a(co) [ne°a(co)/co]     . (9) 

This equation states that the stored energy £0(00) is attained by the isolated (a)th 



structure in response to an external input power IWw) that is directly injected into it; 
this power is dissipated, in this structure in isolation, by the loss factor ^(co). From 
Egs. (lb) and (8) one may define three useful forms of stored energy ratios: £a(co), 
5Jja(co) and £a(ffl)- T*10 first ratio is defined 
5„(tO)=[Ea(CO)/E°(Cü)] = ^(CO)PÖ(CO)     >      SoV) = ßaa(<ü) TW(CO)]     ; 

Po(w) = [nea(ü))/n^((o)]   , (10a) 
and may be used, for example, to assess the influence, on the stored energy of the (a)th 
structure, due to the incorporation of this structure to be an insitu member of the 
complex. Clearly Sa(co) is proportional to the ratio P"(CO) of the insitu external input 
power into the (a)th structure to that in isolation; i.e., before it is incorporated in the 
complex. The second stored energy ratio is defined 

^a((o) = [Ei((o)/E^(a))] = ^CY(fD)pL(a))   ;    C(ß» = R«,«») O0»]   : 

P^a(co) = [ney((D)/ne
0
a(co)]     , (10b) 

and may be used, for example, to assess the influence, on the stored energy of the (<x)th 
structure, due to the incorporation of this structure to be an insitu member of the 
complex when the external input power into that complex is applied to another 
structure; e.g., to the (y)th structure. Clearly ^a(co) is proportional to the ratio 
P0 „(co) of the external input power into the (y)th structure insitu and the external input 
power into the (a)th structure in isolation. The third ratio is defined 

SLifO) = [&(«)/£.(«)] = [El(Q))/Ea(co)] = C«o) P««o)    . 

£?(«)= [W®>/§«<»)]    ;    Pa(co)=[ne/(a))/nea(a))]      ; (10c) 

and may be used, for example, to assess the influence, on the stored energy of the (a)th 
structure, of injecting the external input power into the (y)th structure versus injecting 
it into the (cOth structure itself. The ratio between these two external input powers is 
designated Pa(co) and the stored energy ratio £,(co) is proportional to this external 
input power ratio under the conditions just specified. 

If noise control of the (a)th structure is the criterion of import, then the desire is 
to minimize, in each case, the one relevant ratio of the three; either 2a(co), 
Sod(co) or Sa (co). Minimization of this kind renders the selected ratio small compared 
with unity; the smaller, the more commendable is the noise control achievement. The 
first factor in each of these three stored energy ratios; namely, £<, (©)> £o (G>) and 
Ija (co), respectively, are proper quantities. The propriety is in the sense that these 
quantities are functional only of the properties of the structures and the couplings 
among them; they are independent of the stored energies in, and the external input 
powers into the individual structures that comprise the complex. These properties, in 
SEA, are defined in terms of the elements of the loss factor matrix TJ (to) and/or of the 
gain factor matrix 4(ca). For a prescribed model of the complex, these elements are 
assumed known affd changes in these elements, to achieve a desired noise control 
condition, are also assumed known. A question arises with respect to the second factor 



in each of the three stored energy ratios: Are these second factors; namely, 
Po(co), PÜa(<ö)andp£(co), respectively, which consist of various ratios of external 
input powers into specific structures, directly or indirectly dependent on the properties 
of the structures and especially of the couplings among them? If the external input 
powers are assumed to be independent of the couplings 

pfl
a((D) =» pr«o) = i    . (Ha) 

PL(CO) => Pol«») = [XY„(a>) (Mot/My)] - (Hb) 

PY
a(CO) =>  P°a

Y(CO) =   P°nY
o((0) . (He) 

On the other hand, if the external input powers are dependent on the couplings, changes 
in these couplings, which are designed to achieve desired noise control condition with 
respect to the first factors, may influence, adversely or beneficially, the corresponding 
second factors. The central theme of this paper is the investigation of the influence of 
the couplings on these second factors. 

5.    External Input Power at SEA 

It is usual to specify the external drive, to which a structure may be subjected, by an 
external force-source or an external velocity-source; in the first the external force is 
specified, in the second the externally imposed velocity is specified. When the external 
force-source is employed the external input power into a structure is 

ne(co) = (|Fe(<o)|2)(G(<o))    ;    Se(co)A<B = 2Jt(|Fe(a>)|2>    ; 

<G (w)) = [(7C/2) n (co)/M]     , (12a) 
and when the external velocity-source is employed the external input power into a 
structure is 

ne(o» = <| V£((o)|2>Re{ < [G«n) - i B(o))]'1) }    ; (12b) 

where G(co) is the conductance and B((0) is the susceptance, with both these quantities 
being real, Se(a>) is the quadratic spectral distribution of the force-source, n(co) is the 
modal density and M is the mass of the structure [3]. In order to avoid difficulties, 
without loss in insight, Eq. (12a) is used in this paper and the use of Eq. (12b) is 
deferred to another. Figure 3a depicts the single structure on which attention is now 
focused. The SEA equation of motion for this structure is given by 

coTi(co)E(co)=ne((D)     , (13) 

where T|(co) is the loss factor and E(u>) is the stored energy that is generated by the 
external input power ne((o). The external input power ne((0) into this structure is 
stated, as agreed, in Eq. (12a). It may be instructive to subdivide this structure into two 
substructures; one designated (1) and the other (2), as prescribed in Fig. 3b. The SEA 



equation of motion for the two-structures complex is given by 

co [T|n(co) + Tl2i(C0)] E^co) - coTh2(co) E2(co) = nel(w)     , (14a) 

co [TI22(CO) + TI12«O)] E2(co) - C0Ti2,(a» E,(to) = 0   , (14b) 

iwi««» = [Tu(»)Ain(o>)] = [i + TII(«>)tf(«)] [i + d«»)]"1    ; 

ili(co) = [Ti22(co)/T|11(co)]    ;    £,(«)) = [E2(co)/Ei(co)]      • (14c) 

[cf. Eqs. (la) and (4).] Invoking Eq. (2), Eq. (14c) may be cast in terms of averaged 
modal quantities and parameters 

nel(tO)=[Tle(ö))/Tl,i(CO)]={l + ttf«D) [X\(CO) O?(©)] } { 1 + [X](CO) ö](©)] }   ; 

£?(«) = [A,?(CD)O?(<D)]    ;   Oi(to) = [e2(co)/e1(to)] = [v^2(co) + l]'1    ; 

^(to) = [n2(to)/n1(co)] = [Ti21(co)/Ti12(co)]    ;    Vi2(co) = [TI22(CO)/T!I2(CO)] . Ü5) 

2 2 
Thus, the "coupling quotient" Vi2(co), the modal density ratio \\ (co), the modal stored 
energy ratio <Ti (co) and the effective loss factor ratio r|ei (co) are all proper parameters of 
the two-structures complex. Clearly, if Vi2(co) >> 1, the coupling between the (2)th 
and (l)th structures, in this complex, is weak and O] (co) « 1; if 10 > v,2(co) < 1, the 
coupling is moderate and 10' < o\((0) < (1/2); and if v12(co) < 1, the coupling is 
strong and <Ji(co) —> 1. The classification is in accord with previous treatises on this 
subject [1,2,7,8]. This is not, however, the whole story; the material discussed in 
Section II is called upon to contribute to the story too. In this vein the (l)th structure 
is appropriately isolated and its SEA equation of motion is then stated in the form 

co it" j (co) E" (co) = n°el (co)     , (16a) 

and if the external force-source remains unaltered by the isolation, the external input 
power injected into the (l)th structure in isolation is 

ne1(co) = (|Fe(co)|2><Gi(co))    ;     <G°(co)> =(n/2) [n^/M,]      .    (16b) 

[cf. Eqs. (8) and (12a), and Fig. 3b.] From Eqs. (10a) and (14) through (16) one derives 

£1(co) = [E,(co)/Ei(co)] = ^(co)Po(co)    , (17) 

^(co)=K„(co)r|011(co)]    ;    ^,(co)= {^(co) (l + [^(co)o'(co)])}'1     , (18a) 

Po(co) = [nel(co)/n°,(co)]     . (18b) 



To set the stage, it is contrived that the division of the structure into a two-structures 
complex is constructed at a "controlled boundary"; i.e., at a thought boundary that 
involves no change in the physical properties of the original structure. Under this 
construction SEA would demand that quantities and parameters in Eqs. (12) and (13) 
match those in Eqs. (17) and (18) in the form 

Oi(co)-»1      ;      THCD)-»MW)     ;     ne(co)-»nel(co)     . (19) 

The first of these matchings signifies that the couplings at the controlled boundary is 
strong, as a merged structure would; after all, the complex is, in fact, a single structure! 
From Eqs. (17) through (19) one finds 

Si (w) = fo°ii (<»)Al(<°)] [Mi/M]     ;    M = M, + M2        , (20) 

£ (<») = [illl («y T| C®)] [ni (<ü)/n(ü>)]    ;    n(co) = n, (co) + n2(co)     , (21a) 

pJ(co)=[n(co)/M] [Mi/n,(co)] = [l + X?(o>)] [1 + (Mj/M,)]"1     .  (21b) 

Two major points emerged: The first is the simplicity of Eq. (20) and the second is the 
particular form of P0 (co), as stated in Eq. (21b). This particular form of P0 (CO) may be 
summarized 

|  > 1     ,       X?(<o) > (M2/M,) ,     (22a) 

Po(«)   /   = 1      ,       X?(co) = (M2/Mi) ,     (22b) 

(   < 1     ,        X?(eo) < (Ma/MO .     (22c) 

and one is reminded that Xi(co) = [n2(co)/ni(co)]. Equation (22b) defines the two 
structures; (l)th structure and (2)th structure, to be similar and Eqs. (22a) and (22c) 
define them to be dissimilar; Eq. (22a) defines a "light" and Eq. (22c) defines a "heavy" 
adjoined (2)th structure. In Eq. (22) the notion that the external input power into a 
structure is independent of the coupling when another is adjoined to it, is challenged, 
notwithstanding that if the structures are similar, as just defined, the challenge is 
muted. 

The contrived division of the structure, just discussed, brings out another topic of 
significance. The division clearly results in two structures, each of which has a 
resonance frequency distribution that occupies a higher region of the co-domain than the 
original. Indeed, in the lower frequency region, where "global-modes" lie, the division 
of the single structure cannot be strictly entertained. As suggested by the global-modes 
designation, in that lower frequency region in which these global-modes reside, the 
(l)th and (2)th structures must be assumed merged apriori. This merger, in turn, 
validates apriori the matching, stated in Eq. (19), for the global-modes. 



Returning to the central topic of discussion, the boundary between the two 
structures is assumed physical rather than controlled, and, therefore, Eq. (19) could no 
longer be validated apriori. One expects that if the coupling of the (2)th structure to the 
(l)th structure, at this boundary, is weak, the external input power ratio P0(co) 
converges onto unity. Heuristically, the bridge between weak and strong coupling, and 
vice versa, can be expressed, for the two-structures complex, in the form 

pJ«o) = {l + X?«a) [o2(co)]q} {1 + (M2/M1) [a2(co)]q}"'    ; 

Oi(oo) = [l+Vi2((o)]"1 < 1      , (23a) 

where the index q is yet to be determined; a likely candidate, however, is q = 1. In 
Eg. (23a) a weak coupling is characterized by a small value, compared with unity, for 
OK©) and, in accord with Eq. (19), a strong coupling is characterized by a value of 
Oi(co) that converges on unity. In any case, for the two-structures complex, as 
Eq. (15) attests, the quantity Ci(co) is a proper parameter. In this sense Eq. (23a) also 
defines a proper quantity; P„ (co) is proper. Using Eq. (23a), Fig. 4 is presented. In 
this figure values of P0 (<o) are depicted as a function of (M2/M1) and X, (co) for two 
fixed values of a2 (co); in Fig. 4a, a2(co) = 1, which is commensurate with strong 
coupling and in Fig. 4b, o^co) = 0.2, which is commensurate with a fairly weak 
coupling. Analogously, the external input power ratio Pni (co), as stated in Eqs. (10b) 
and (12a), can be expressed, for the two-structures complex, in the form 

Poi(to) = Po2,(co){ 1 + Xi(co) [a2(co)]q} {1 + (M,/M2) [a2((ü)]q}'X ; 

Poi(to) = [X2i(co)(M1/M2)]   ;  a2(to)=[l+v21(to)]"1<l     ; 

v2)(co)=[ru,(co)/Ti21(cü)]    . (23b) 

and again, P2, (co), in Eq. (23b), as Eq. (15) attests, is proper, [cf. Eq. (llb^.] The 
criterion for weak or strong coupling in Eq. (23b) is characterized by whether a2(co) is 
small compared with unity or approaches unity, respectively. Finally, from Eqs. (23a) 
and (23b) and Eqs. (10c) and (12a) one obtains 

P2 (to) = {[Po, (co)] (o2(co) < 1) / [P0(co)] (o2 (co) < 1) }     , (23c) 

2 ... 
and, clearly, Pi(co) is proper.  [The product or the ratio of two proper quantities is 
proper!] From Eq. (23) it emerges, again, that if the two structures are similar 

X2(co) = (M2/M,)      , (24) 

the external input power ratios, just stated, are all substantially equal to unity, 
independently of the coupling [1,2,4]. It also emerges, again, that if the two structures 
are dissimilar and the coupling is strong in the sense that the coupling quotient v 12(co) 
is small compared with unity so that at (co) -» 1, the external input power ratio P0 (co) 
differs from unity.   Notwithstanding that for weak coupling in the sense that the 



coupling quotient v,2(co) is large compared with unity so that CT2((0) « 1, P0(©) 
approaches unity even if the structures are not similar; i.e.,2when Eq. (23) is violated. 
Analogeous assessment can be conducted with respect to P0i (co), stated in Eq. (23b), 
and P i ((0), stated in Eq. (23c). 

The generalization of Eq. (23) can be readily made. Following the definitions of 
p"(to), Po „(co) and Pa(co), stated in Eq. (10), utilizing Eq. (12a) and the procedure that 
led to Eq. (23), one may readily extrapolate and state 

Po (co) = {| JiS(co) [oP(co)]q/£ (Mp/Mo) [c&to)]q }    , 

o„p(to) = [^ß„(co)/x!;(co)U(co)]<l ; <25a) 

PY 
a(co) = P&(a» { J X{((D) [oY

P(co)]q/£ (M„/MY) [o?(co)]q} 

PÖ^(co) = P&m) (Mo/My)]   ;   op(a>) = fojY(co)A?(co) $YY(a»] < 1       ; (25b) 

Pl(co) =   [Poa(co)](oY
P(co)<l)/[Po(co)](ap(to)<l)      , (25c) 

where use is made of Eqs. (lb) and (2) and P^(to) is defined in Eq. (1 lb). Since the 
elements in the gain factor matrix £(co) are proper and so are the modal density ratios, 
the external input power ratios, Stated in Eq. (25), are also proper. Thus, in this 
generalization to a multi (more than two)-structures complex the quantities P0(co), 
Poa(to) and Po(co) are proper, notwithstanding that once the first two are, the propriety 
of the third follows. Moreover, it remains invariant that if the structures are similar 

x£(co) = (Mp/Ma)     , (26) 

the external input power ratios, stated in Eq. (25), are all equal to unity. When the 
structures are dissimilar, deviations from unity of these ratios may occur; such 
deviations from unity need to be estimated when noise control criteria are being 
developed for multi-structures complexes [4,8]. Of particular import in these estimates 
is the influence of the couplings, among the various structures, on these ratios. The 
manner of estimating these deviations, as they relate to the couplings among the 
structures, is presented in this paper. Equation (25) in conjunction with Eq. (10) may 
be efficaciously employed to establish noise control criteria in situations in which 
dissimilar structures are coupled memebers in the same complex. 
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Abstract 

Exact expressions for the SEA power flow relation between substructures 
are presented. The approach is based on stochastic modal analysis and is 
capable to treat non-conservative and strong coupling. Moreover, energy 
distributions within subsystems are obtained. 

Introduction 

SEA is a well established procedure to evaluate the vibration in complex sub- 
structures controlled by the energy dissipation and coupling. The methodology is 
applied mainly in the high frequency domain for which mode shapes cannot be 
predicted deterministically. SEA is well documented and the recent book by Keane 
and Price (1996) summarises essential developments in that field. In the critical 
overview of this book by F. J. Fahy it is mentioned that the accuracy might not 
be satisfactory for strong non-conservative coupling. Moreover, it is not applicable 
for the low frequency range. The present approach tries to fill this gap. 

Method of Analysis 

Stationary Stochastic Modal Response 

In typical application of SEA, the amplitudes of vibration are generally quite small, 
and all components react essentially linear. It is therefore justified to confine the 
following considerations to a linear structural system, of which the equation of 
motion may read, 

Mx + Cx + Kx = f(t) (1) 

where M, C and K denotes the mass, viscous damping and stiffness matrix, and 
x and f(t) represent the generalised displacement and force vector, respectively. 
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For the derivation of the stochastic response, it is advantageous to rewrite the 
equation of motion (1) in a first order form, 

y = A ■ y + g (2) 

introducing the state vector y, g and the matrix A as specified in the following 
where U denotes the identity matrix: 

yT = {xT,xT}    ;    gT = {0T,fTM~1}    ;    A 
0 U 

-M~lK   -M~lC (3) 

There are well established procedures to determine the stochastic response of 
linear systems (see e.g. Lin (1976)). The main features of the stochastic response 
can be characterised by it first two moments, i.e. the mean vector E{y} and 
the covariance matrix D = E{yyT} - E{y} • E{y}T, where E{} denotes the 
mathematical expectation or average. 

The mean vector E{y} is obtained by taking the expectation of eq.(2) leading 
to eq.(4). Since the mean E{y} must for a stationary response not change w.r.t. 
time, it follows that the right hand side of eq.(4) is zero, and the mean vector is 
determined analogously as in the static case where the loading is replaced by its 
time invariant expectation. 

E{y} = A-E{y} + E{g} (4) 

forE{y}=0     :     E{x} = K'1 ■ E{f} (5) 

As it is common practice in random vibration analysis it will be assumed in the 
following, that the response y and the excitation / or g have zero mean, i. e. 
E{y} = E{g} = 0, bearing in mind that the static part needs to be added if the 
total response is required. 

The covariance matrix D can be determined in a straightforward manner. The 
differentiation of the symmetric matrix D w.r.t. time, and introducing eq.(2) in 
the expression below, 

D = ±E{yyT} = E{yyT + yyT} = AD + D ■ AT + B = 0 (6) 
at 

lead to the so called Lyapunov equation for the stationary case (D = 0), where 
the matrix B denotes the symmetric matrix: 

:Ti    »*-1 0 E{x/T}•M 
(7) B = E{gyT} + E{ygT} = [M-^[fxT)   M-iE{/^} + E{xf}M^ 

The above relation defines a linear equation system to determine uniquely all 
2N2 + N components of the symmetric covariance matrix JD, provided the matrix 
B and the matrices defining the structure are known. 

Note that no restricting assumptions have been made in eq.(6) with eq.(7) 
regarding the stochastic characteristics of the excitation.  Considerable effort is 
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needed to determine the sub-matrices E{fxT} and E{fxT} for the general case, 
where the random loading f(t) and the stochastic response x(t) are correlated. 
Only for the special case of a purely random process, i.e. so called white noise, 
these two matrices can be formulated independently from the specific response 
x{t) and x(t). Let the random excitation be represented as 

f(t) = G-t(t) (8) 

where £(t) represents a vector of M uncorrelated white noise components £&(£) 
and G a matrix of dimension N x M with constant coefficients. Using such a 
representation spatially correlated white noise excitation can be described. The 
components &(£) are assumed to be uncorrelated since it is always possible to 
introduce a linear transformation leading to the above representation. In most 
cases, the distributions of the excitation are close to a normal one for which the 
components &(£) can be regarded as independent. Each white noise component 
£k (t) is characterised by the Dirac delta correlated auto-covariance function Rkk (T) 

Rkk{r) = E{&(*)&(* + r)} = Ikk ■ 8{r) (9) 

or its Fourier transform resulting in a constant spectral density Skk = hk/fön)- 

+00 

Skk(u) = ± I Rkk(r)e-iuTdT = canst = ±Ikk (10) 
—00 

White noise is a fairly accurate substitute in case of a broad band excitation as 
commonly met in problems of noise transmission. However, coloured noise can also 
be treated by utilising filtered white noise. Bearing in mind that a generalisation 
to coloured noise is possible, the excitation will be regarded in the following as 
white noise only. For white noise excitation, the force vector f(t) is statistically 
independent from the displacement vector x(t), and also independent from the 
velocity X(T < t) and E{/x } is only function of the white noise intensity matrix 
I and mass matrix M, 

E{fxT} = E{f}E{x}T = 0    ;    E{fxT} = \G ■ I ■ GT ■ M'1 (11) 
it 

where the white noise intensity matrix / is a diagonal matrix and the matrix B 
defined in eq.(7) simplifies to: 

B = 
0 0 
0   M~l   G  I GT  M~l (12) 

For further considerations, eq.(3) and the above relation for matrix B is in- 
troduced into the Lyapunov eq.(7), leading to three equivalent relations for the 
stationary stochastic response, 

E{xxT} + E{xxT} = 0 (13) 

K ■ E{xxT) - C ■ E{xxT} - M ■ E{xxT} = 0        (14) 

Pradlwarter & Schneller 3 



K ■ E{xxT} -M-M- E{xxT) ■ K + 

C ■ E{xxT} -M + M- E{xxT)   C = G  I  GT    (15) 

where eq.(13) has been introduced into the last two equations. 
Utilising the last three equations, all K = 2N2 + N components of the symmet- 

ric covariance matrix D can be determined uniquely by solving a linear equation 
system of dimension K. For large N, however, e due to its size, the solution of 
the if-dimensional equation system becomes cumbersome. This difficulty can be 
circumvented using modal decomposition as shown subsequently. 

Assuming modal damping, the equation of motion (1) decouples by using modal 
coordinates z(t), 

x(t) = * • z(t) (16) 

zj(t)+2<;jwjzj{t)+w]zj{t)=qj{t) = <l)J-f    ;    l<j<N (17) 

where the matrix $ contains all eigenvectors of the characteristic equation, 

K ■ * = M ■ * • A (18) 

where A = [diag{tJj)\ is a diagonal matrix comprising all eigenvalues. The eigen- 
vectors are orthogonal with respect to the stiffness matrix K and mass matrix M 
and are normalised to satisfy the relations: 

*
T
-ü:-# = A   ;    *TM* = C/ (19) 

Assuming further that the damping matrix C decouples using the transformation, 

r = *r • C ■ * = [diagfrj)}    ;    7> = ^j^j (20) 

and introducing the last two relations into eqn.(13)-(15), these equations assume 
for modal coordinates the following simple form: 

E{zzT} + E{zzT} = 0 (21) 

A • E{zzT} - T • E{zzT} - E{zzT) = 0 (22) 

A • E{zzT} - E{zzT} ■ A + T • E{zzT} + E{zzT} ■ T = 

J = #T  GI  GT  *    (23) 

Utilising a modal representation, one is in the favourable position to give an explicit 
solution in closed form for all components of the covariance matrix D as shown in 
the following. Considering the j-th row and fc-th column of eq.(22) and next the 
ifc-th row and j-ih column leads to the following two equation, 

uj)E{zjZk} - jjEizjZk} - E{zjik} = 0 (24) 

ulE{zjZk}k + jkE{zjZk} - E{zjZk} = 0 (25) 
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where E{zjZk} = -E{zkZj} (see eq.(21)) has been used in the last eq.(25). The 
terms E{zjZk} and E{zjZk} can be eliminated from the above two equations, i. e. 
expressed as function of E{zjZk}: 

/ E{zjZt} 1 _     E{ZjZk}     \  lj+lk   \ (^ 
I Hzjh} / - Wl + W] { uj - «2 / w 

Eq.(23) can also be represented by its components which read, 

(w$ - Ljl)E{zjZk} + (7i + ik)E{zjZk} = Ijk (27) 

leading to the solution, 

*{*M = JjV^, (28) 

by utilising eq.(26). The last relation completes the solution in closed form for 
the second moments in modal coordinates and will be the basis for deriving the 
following SEA relations. 

Spatial Distribution of Kinetic Energy 
Statistical Energy Analysis relates the power p introduced into the system by the 
external excitation to the vibrational energy E of the structural components. To 
simplify the derivation, it will be assumed that the mass matrix is diagonal, which 
corresponds to lumped mass points instead of a continuous mass distribution. This 
simplification, however, has a negligible effect on the deterministic and stochastic 
response of a structure respectively. To derive such a relation, the white noise 
intensity matrix I must be related to the power of the excitation introduced into 
the system. Recall from eq.(8) that the intensity matrix J is a diagonal matrix 
because the components &(*) of the vector £ are uncorrelated. Each component 
£fc(£) introduces on the average a certain amount pk of power into the system 

Pk = £ EifMtk)} = \hk £ §■ (29) 
t=l t=l 

where the first index i in g^ € G denotes the DOF and the second index k refers to 
the white noise component. Thus the white noise intensity Ikk of the component 
£k(t) can be related with the average power pk of the stationary white noise process 
£fc(£). For the special case for which the excitation £k(t) acts independently on a 
single mass point mk, the power simplifies to pk = Ikk/(2mk)- 

For continuous structures modelled by a FE-model, the above relations between 
white noise intensity and power is not convenient. First of all, the excitation &(£) 
can not be white, but is specified by a power spectrum Skk which might have 
negligible power outside a certain frequency range. Moreover, there are actually 
no discrete mass points where the excitation acts upon. Therefore, an alternative 
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expression will be given. In case the excitation £k(t) acts only on the A;-th DOF, 
the following relation can be derived by modal analysis, 

N N 1 M is 

Pk = E{fkxk } = -IkkYJ 4>li = *Skk Y, tit (30) 
i=l i=l 

where the first index in <j>ki refers to the DOF and the second index to the mode. 
The above expression can be generalised for broad band excitation: 

Pk = 7rY/Skk(ui)4>2ki (31) 
t 

For the general case where the possible correlated excitation is defined by eq.(8), 
the input power reads: 

N N 

pk = ^Eifiiifa]} = ir£SwM(5>t&„)2 (32) 
t=l n i=l 

Next, the modal density Ijk is related with the power pk of the external white 
noise excitation. 

Ijk = <$>? ■ G ■ I ■ GT ■ <f>k = JTla(£hjgu)(J2 4>ik9u) (33) 
i=l 1=1 1=1 

Relating the white noise intensity la to the power pi 

M 

ijk = 2Ylci{j,k)Pi (34) 
t=i 

the coefficients Ci(j,k) are determined from eq.(32) leading to the dimensionless 
quantities 

y/Skk(uj)Skk(u)k)(T,i=i <l>ij9ii)(T,i=i 4>ik9u) ,,_v 

En5**(wn)(X,i=l 4>ln9lnY 

where c^j<k) is a dimensionless quantity. 
Denoting the averaged kinetic energy of each DOF j as ej and recalling the 

modal representation in eq.(16) leads to 

1 1       N   N 

ej = -mjE{x]} = -nij J2 J2 4>jn4>jiE{znzi} (36) 
n=l1=1 

where the first index j in <j)in denotes the DOF of the n-th normalised eigenvector 
or mode. Nothing further that for small damping ratios f„, which are usually in 
the range of a few percent and less, the main contribution to the kinetic energy 
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of the structure stems from the diagonal terms E{i2} and closely spaced modes 
with u2 « uf, and assuming further that the eigenpairs (u>2,<£n) are ordered, 

u\ < w| < • • • < u2
N (37) 

eq.(28) can be replaced by the following expression: 

*i = £ y^»^»} + 2 £ ^^n+iE{inzn+1} +... (38) 
n=l n=l 

Introducing the notation, 
(a;2 — a»2)2 

fy(n,0 = m^jn^ji    ;    7(n>i) = 7n + 7, +      "2 ,   '  ,2 (39) 

the terms E{inif} read, M 

£{*„;*,} = ECi(n.')P« (40) 
7(n,0 i=i 

and thus the kinetic energy of the j-th DOF specified in eq.(38) becomes: 

N   h M N-l , M 
* = E ^ E «*».«>« + E fen^ E Ci(n n+i)pi + . . . (41) 

n=l  7(n'")   i=l n=l    '("."+1)   i=l 

Introducing the vectors, 

eT = {ei,e2,...,eiv}    ;    fyn,i) = {/ii(n,/)i^2(n,i)> • • • .^(n,!)} 

PT = {Pl,P2,---.PAf}      ;      C\n,l) = {Cl(„,(),C2(n,/),...,CM(ni/)} 
(42) 

the above equation can be generalised to establish a relation for the spatial dis- 
tribution of the energy e for all DOFs of the structure subjected to white noise 
excitation p: 

e = [J2 fc(n'n)' °T{n'n) + 2 X! fc(nin+1)' C^"'n+1) +•••]• p (43) 
n=1 7(n,n) n=1 7(n,n+l) 

The above relation is the main result of this paper and deserves a more detailed 
discussion. 

Consider first the vector h(n,i) defined in eq.(39). Since the eigenvectors <j)n 

or modes are normalised w.r.t. the mass matrix, the vector /i(n,j) satisfies the 
property: 

£ Jl,-(n,n) = 1      ;      0 < fy(n.n) < 1 (44) 

TV 

£ fy(n,i) =0    ;    -1 < hj{nti) < 1    ;    for I £ n (45) 
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Looking at the total kinetic energy etot of the system, 

etot Eei = Er^] 
3 = 1 

1 7(n,n) 
P (46) 

it becomes apparent, that only the first term in eq.(43) contributes to the total 
energy of the system, while the second and higher terms vanish due to eq.(45). 
Thus, the second term in eq.(43) accounts for a redistribution of the kinetic energy 
within the system letting the total amount of energy constant. The effect of 
the redistribution is in most cases negligible where the eigenfrequencies are well 
separated and become important only for pairs of closely spaced eigenfrequencies 
as it will be demonstrated in the numerical examples. 

For the special case in which independent excitations act on single masses m* 
introducing the external power E{fkik} into the structural system, it is readily 
verified (Ikk = 2mkPk (see eq.(29)) and /„,* = 4>kn<t>kihk) that 

ck(n,l) = rnk<j>kn4>kl = hk(n,l) 

hold for which eq.(43) reads: 

N h, ■h 
/V-l 

e = [^U("'n) •"<"■">+2 £ 
7(n,n) 

*(n,n+l) ' n(n,n+l) 

n=l '^'■"' n=l 7(n,n+l) 
+ ...].p 

(47) 

(48) 

where the fc-th component of the vector p denotes the input power pk = E{fk&k}- 

SEA of Coupled Structural Components 

The SEA method can be regarded as procedure to determine the vibration energy 
balance in complex coupled systems. The subsystems in the SEA model are either 
weakly coupled structural components or "blocks of similar modes". The external 
excitation introduces in each subsystem an input power IIj„ which is dissipated 
by internal damping, but also transmitted to neighbouring subsystems by the cou- 
pling. The dissipation of the power Il^n of the i-th subsystem is expressed by 
the so called loss factor r\i multiplied by the kinetic energy Ei of the subsystem. 
The power flow Ily from the i-th to the j-th neighbouring subsystems is measured 
by the coupling loss factor r/ij multiplied by the difference (Ei — Ej) of energies. 
Hence, SEA states that power is transmitted only from subsystems of higher ki- 
netic energy towards neighbouring systems with lower energy. In case the systems 
consist of J subsystems the following typical energy flow equation is established, 

U)c 

-»721 

Vij -7?12 

m + Ej#2 V2j  ■ 
-T]1J 

-r)2J 

-VJi -77.72 •      T)J + T,j?jVJj 

Ex   1 
E2 

EJ J 

n2 
> = < 

I ib J 
(49) 
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for certain frequency bands [wi,vu] with uc = {u>i +uu)/2 and where the coupling 
loss factors are symmetric, i.e. TJ^ = 77^. For substructures Si and Sj which are 
not directly coupled, the coupling loss factors are assumed to vanish, i.e. r/y = 0. 

For a shorter notation, the above SEA power flow relation is expressed in 
matrix notation, 

t-{E} = {Uin} (50) 

with 
% e f    ;    7« = Uefa + Y^ Vij)    I    7« = -"Mi for j # « (51) 

where the "hat" in 7 is introduced to distinguish these coefficients clearly from 
modal damping 7* defined in eq.(20). 

The above SEA equation (49) is now compared with the exact solution stated 
in eq.(43) and eq.(48). The solution in eq.(43) is given in the form 

e = f_1p (52) 

corresponding to an inverse formulation of (49). The eq.(43) can be easily specified 
for energies Et in substructures Si,i = 1,2,...,L. Let {Ji} be the set DOF 
belonging to the substructure Si. Since the kinetic energy Ei of substructure St 

is just the sum of all energies tj of the DOF j belonging to Si, eq.(43) reads for 
substructures, 

E = [T h(n'n) ' °T{n'n) + 2 Y h(n'n+1) ' °^n+1) +•■•]• P (53) 
^1 7(n,n) ~ 7(n,n+l) 

with: __ 

Ei = x ei (54) 

ie{J.-} 

In a next step, the power input IIj in a substructure Si is defined as the sum of 
single sources pj 

Hi =   X Pi (56) 
ieiJi} 

where it is assumed that there is no correlation in the excitation across substruc- 
tures, i.e. the coefficients gij ^ 0 (see eq.(8)) belong for all I to the same substruc- 
ture. Introducing the quantities 

Z/jelJ.-} C
JK0PJ -T r- 7.        \       /crv 

C<(n,0 =        V             ;      C(«.') = \CHritl),C2(n,l),---,CL(n,l)} {^7) 
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the kinetic energy in the substructures is determined by the linear relation, 

E = T  n (58) 

or equivalently in the standard SEA form 

t  E = Il       with     f = T_1 (59) 

where the matrix T reads: 

Y = [JT /l(n'n) " g<"'n) + 2 £ fc(n|W+1) ' ^"'n+1) + • ■ • ] (60) 

Please note, that the coefficients c^nj) are determined uniquely only in case it is 
additionally specified at which DOFs the power inputs pj are introduced into the 
subsystem. In other words, the specification of the power IIi,j„ introduced into the 
elastic subsystem Si is in generally not sufficient to specify uniquely the average 
kinetic energies or stationary stochastic response of the system. Only for the 
case that the whole substructure Si vibrates uniformly over its domain and quasi 
independent from neighbouring substructures (weak coupling), the specification of 
the power input is sufficient to determine uniquely all energies in the substructures. 

Another important aspect is the symmetry (see eq.(49) and eq.(59)) of the 
SEA power flow relation. For arbitrary strong coupling between substructures, 
the matrix f is non-symmetric contrary to the matrix f in eq.(50). Considering 
eq.(48) the matrix f is symmetric under the assumption that substructures do 
behave like mass point with a single DOF each mass point. Thus, in case the 
substructures are very rigid in comparison to the coupling the matrix T tends to 
be symmetric. 

Numerical Examples 

EI,n       ^             EI,u            £      EI,u 

1       3.0 m        5.0 m I       3.0 m      I 

Figure 1: Structural System 

The power flow relation in an elastic beam as shown below in Fig.l is investigated 
in the following. Due due its symmetry closely space modes occur. The beam 
has a constant mass density /i and two elastic torsional couplings k. Due to space 
limitations, only the case where k -*• oo is presented, representing strong coupling. 
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Figure 2: Partition of beam-structure into three sub-structures SI, S2 and S3 

Modal analysis has been performed for the shown beam structure using 19 modes. 

In a first case the structure is partitioned into three substructures as shown 
in Fig.3 where the supports represent natural boundaries of the substructure. 
The results depend according to eq.(60) mainly on the specific modal damping 
7(n,n) = 4CnWn- The results obtained for constant 7(n,n) are presented below. 

For     Qwj = const   ;    k -+ oo    ;    modes € [1,19] 

0.87825 0.01758 0.08737 
0.03438 0.96485 0.03485 
0.08737   0.01759   0.87825 4< (u> > 

4<0> 
+1.1507 -0.01889 -0.1137 
-0.0370 +1.0378 -0.0370 
-0.1137    -0.0189    +1.1507 

The above shows the results according to eqn.(58) and (59) using all first 19 modes. 
Next the same quantities are shown using only the first four modes. 

For     Quj = const    ;      k -* oo    ;    modes €[1,4] 

0.60127 0.02818 0.34163" 
0.05710 0.94364 0.05710 
0.34163   0.02818   0.60127 4 < Cw > 

4< Cw > 
+2.4580 -0.0318 -1.3936 
-0.0644 +1.0636 -0.0644 
-1.3936   -0.0318     2.4580 

Finally strong coupling is investigated using a partition into substructures as 
shown in Fig.3.   One can observe that the presentation according to eq.(58) is 
quite reasonable in contrast to the standard SEA representation (59), which is 
admittingly not designed for strong coupling. 

For     Qujj = const    ;    k -> oo    ;    modes € [1,19] 

E2 

EA 

> = 
1 

4 < Cw > 

0.38358 
0.53705 
0.01299 
0.06638 

0.38788 
0.53954 
0.01086 
0.06172 

0.00603 
0.01155 
0.96485 
0.01758 

0.03053" r * ) 
0.05684 
0.03438 

• < n2 
n3 f 

0.87825 n4 
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Figure 3: Partition of beam-structure into four sub-structures SI, S2, S3 and S4. 

4<<w> 

-409.20 +294.74 -0.8859 -4.8200 
+407.04 -291.32 +0.8611 +4.6746 
+0.8438 -0.6241 +1.0392 -0.0296 
+2.3069 -1.7925 -1.4350 +1.1750 

r E1 j fn. 
Ei J n2 
Ez r °3 
Ei I n4 

Conclusions and Outlook 

The following conclusion are drawn from the presented results: 

(1) Exact expressions for the SEA power flow relations have been obtained. These 
expressions are exceptionally simple and allow to consider strong coupling (not 
just in the SEA sense) and energy dissipation in the couplings. It has been shown 
that a inverse representation is for arbitrary strong coupling better suited than 
the present standard form. 
(2) A SEA expression for the energy distribution has been derived based on de- 
terministic modal analysis. The derived expressions might be used also for non 
deterministic modes, considering the mean and variance of the modes shapes. Spa- 
tially averaging leads to accurate estimates also for unknown modes shapes. 
(3) The presented approach is expecially suitable for the low frequency domain 
and for strong non-conservative coupling. It allows to account for specific modal 
damping ratios, which might be quite different especially in the low frequency 
domain. 
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INPUT POWER MODULATION METHOD 

KARL-OLA LUNDBERG 
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Sweden 

1. Introduction 

There is a need for in situ experimental estimation of loss factors and proper subsystem 
division when analysing assembled systems using statistical energy analysis (SEA). 
On the basis of a physical measure, the modulation transfer function computed from the 
squared impulse-response, a method has been developed for this purpose, see Fahy and 
Ruivo (1997), Lundberg (1997). 

The SEA power balance equations in a narrow band (©„, Ao) are for two coupled 
subsystems 

aEj(o" 
dt -ö>o7i 00*7,2 "p,(0 n,(0 

dE2(t) 
.^O^l -(O0TJ2\[E2(t)_ 

+ 
.n2(o_ (1) 

L<u0772]    -»o^JL^WJ  LU2WJ 
dt   J 

where r]x = 77,, + TJ2X and rj2 = 7]22 + TJ12. 77^ is the coupling loss factor describing 

the energy flow from the i:th to the j:th subsystem and TjA the internal dissipation loss 
factor in subsystem i. E{{t) is the resonant vibrational energy stored in subsystem i 
and II, (t) the external input power injected into subsystem i. 
The equations can be Fourier transformed, rearranged, inverted and put on the form of 
power-energy transfer functions (Lindblad 1974), which are of low-pass character: 

1 EX(Q) 

fi2 (H) J    On+fi)0 77, )(>n+o)0 rj2) - o0 tj2la)0 rjX2 

jCl+0)0TJ2 Q)01J]2 

.   «0*721       ^ + «0*7. 

n,(n> 
h2(ci) 

(2.) 



A indicates the transformed functions and ft is the transform variable equal to an 
ordinary angular frequency. The upper left element, e.g., in the square matrix of (2) is 

\E} IIIJ. , where the index indicates that only fl, is active. 

In principle the SEA parameters in a transfer function model in (2) could be identified 
from e.g. a least square fit to a corresponding measured function. However a transfer 
function in the diagonal of (2), though of second order, deviates very little from a first 
order if tj2i « r\x, and / or ijn « r\n. Then the results from such an identification 
will have no meaning and a necessary further step is to normalise on the source. 

Take the quotient between transfer functions with the same source, i.e. between 
elements within the same column of (2), e.g. 

%) 

( -Y -^  (3) 

A ja+a)0Tj2 

which is a robust lower order model. Notice that the input power can be reduced and 
thus does not have to be measured. 

In earlier days when measuring response, one tried to use ideal sources like constant 
force or constant velocity sources, giving the boundary conditions F=0 and v=0, 
respectively. Nowadays when transfer functions are measured, one must pay attention to 
the virtual boundary condition introduced. It can be achieved by putting the variable in 
the denominator of the transfer function equal to zero. Transfering this to (3) where E} 

is (secondary) generator, it means that the virtual boundary condition is given by E} =0, 
i.e. subsystem 1 is energy earthed. Let a plate be imaginary divided into two parts, 1 
and 2. Then Tjn is large which implies that TJ2 will be large and consequently the 
quotient (3) will be flat up to a (high) crossover frequency a>0Tj2. The more the 
boundary actually is reflecting, the smaller ffoand then a)0Tj2 is lowered and in the 
limit it will be determined by the internal dissipation factor which gives O)0 Tj22. 

2. The relation between the physical system and the SEA formulation 

A structure or an acoustic indoor channel may with high accuracy be modelled into a 
linear, time-invariant and causal system. This means that an impulse-response 
completely describes the system. Let a structure be excited in a position r0 by a force 
F0, which is a single-frequency modulated white noise signal: 

shaker A. v(t) 

 fr- 

Figure 1. A structure excited by a point force 
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Figure 2. The linear system and in and outputs.{n(/)} is a stationary 

Ol r        -, a, 
stochastic process, cos I a afetenninistic function and the force {n(f)/-cos——t a 

2 2 
nonstationary process. 

The velocity response v(t) in an observation position r is 

where the star denotes convolution and h is the band-pass filtered impulse-response i.e. 
h = hlr(t,r,r0)*hBP (5.) 

h could include all linear distortions (e.g. of loudspeakers). 
The ensemble average over many realisations of the squared velocity response process is 

(Using the calculation trick (J dx)  = \dxx \dx2): 

E{v\t)} = 

= £JT £{«e - x)n(t-y)}cos^-(t - x) cos^-(t -y)h(x)h(y)dxdy = 

= h2*COS2^-(t) (6.) 

where it is used that the auto-correlation of white noise is a Dirac delta function. 
The Fouriertransform of the squared impulse-response is essentially the complex 

modulation transfer function (CAfTF), which is defined by Schröder (1981) and Polack 
and Schröder (1984) as 

CMlF(n)=jkl(Lt)e-'0'dt.Hu,(fl) (7.) 

where H^ is an ideal low-pass filter. The CAfTF can be computed by post-processing 
the impulse-response by squaring followed by Fouriertransforming. 
If two plates of area 5, and S2 and of equal mass per unit area are coupled, then 

(CM7F(n,r0))2,  s2 

{CMTF(Cl,r0))n'S, 
(8.) 



will be strongly related at low frequencies to the SEA expression in (3). < > denotes 
spatial average, the right index in the double subscripts denotes the externally excited 
plate and the left the observed. Let the result of a fit of (8) to a system where the orders 
of the denominator and numerator polynomials are given and equal to 1 and 0, 
respectively, be the coefficients in the expression 

Identification yields that the following pairs are related: 
{a>07]2l++b0 

\(O0T]2++a0 

(9.) 

(10.) 

Incidentally one may derive an expression corresponding to (6) for the instantaneous 
input power 11(f) = F0 (t)v0 (J), see appendix. 

3. State of method development 

_ .        ...   .  ,   .    Modulation transfer function 
Rel. amplitude (-) 

10° 

10" 

10"' 

-50 
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1<j>-1 

Phase (degrees) 
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Figure 3.   Idealised modulation transfer function representing the resonant (reverberant) field 

( ), the direct field ( ) and the total field ( ). (UQIJ* 13.8 (1/s) and tj « 0.001s, see 

section 4. 
Ranges of applicability: 

<c) SEA © Quasi steady-state SEA. The upper limit is approximate 

QP [0.63,12.5] Hz, range for calculation of Speech Transmission Index (STI). A different 
application of the CMTF is in room acoustics. There is a procedure to convert CMTF data into a 



Single figure called the "speech transmission index" (STI). It has been shown that the STI is very 
closely related to speech intelligibility 

® Direct field modulation is dominant At the left end of the range, the magnitudes of the 
modulation of the direct and the reverberant field are equal, which could define a "modulation 
direct field radius", see section 4. 

Up to now, the method has been used for estimation of SEA coupling and dissipation 
loss factors in built up structures and rooms, see Fahy and Ruivo (1997), Lundberg 
(1997). Till now, the method has been used rather heuristic in range ® see figure 3, 
which upper limit arbitrary has been chosen to where the phase-function is 
approximately - nl 4. 

4. The direct field and the modulation transfer function 

Let the squared impulse response consists of two parts, the direct field and a purely 
exponential reverberant field (Houtgast T. et al (1980)): 

h2(t)«:^-r.S(t)+e-*'<-*'-,')d(t-tJ) (11.) 
lr-ro| 

tj is the initial time delay gap, 0(t) the Heaviside's unit step function, S(t) Dirac's 
delta function and CD01J= 13.8 / T, where 7"is the reverberation time. 
The direct field is attenuated with the distance from the source. A point source in a 
room will have a direct field that decreases at 6 dB per doubling of distance. The 
CMTF results from application of (7): 

CMTF(Ci) oc-f^+e-*»' 1  (12.) 
|r-r0| jn+a>0n 

The part referring to the direct field is modulation frequency-independent and 
constitutes a "floor" for the amplitude of the CMTF. At higher modulation frequencies 
the contribution of the direct field becomes significant, as is shown in the example in 
figure 3, where the ratio between the energy in the direct field to the reverberant field 
is 0.17. The distance where the magnitudes of the modulation of the direct field and 
the reverberant field are equal, could be called "modulation direct field radiusn. 
Derived from (12) and normalised on the ordinary direct field radius, it is equal to 

(, _ x2     V'4 
( 

S- Ui (12.) 

When estimating SEA parameters, the contribution from the modulation of the direct 
field should not be dominating. 



Modulation direct field radius (-) 
101 

Figure 4. The modulation direct field radius (normalised). Incidentally this has 
applications at investigations of slit leakage. 

5. Subsystem modulation homogeneity 

In experiments on structures and rooms it has been observed that within the subsystems 
the relative variance of the amplitude and phase of the CMTF increases as the 
modulation frequency rises. 
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Figure 5. CMTF:s for five observation positions, one source position. From experiments on a steel-plate 
of area 1.7 nr* and thickness 2 mm. The right-hand Ordinate represents the modulation coherence as 
specified by (13) and (14). 

It is important that the model behaviour of the physical system holds above the 
crossover frequency, else there is no point in doing the parameter estimation. The 
spatial homogenity could be quantified by a computed modulation coherence function 

2 

r2(n,r0) = z: it=iCM7F(n,rt,r0) 
(13.) 

where the summation is over the observation positions. Fahy and Ruivo (1997) have 
pointed out that the modulation phase dispersion phenomenon appears to place 
considerable doubt on the validity of extension of the SEA equations to represent non 
stationary vibrational energy flow between subsystems. Also a modulation "phase 
coherence" function could be computed from 

CMTF(Cl,rk,r0) ' 
fphaM(ß,ro) = 

>)| 
(14.) 

»—• \CMTF(Cl,rk,r0J 

The SEA-model designer must group modes that are "similar" together. It is possible 
that the modulation transfer function could be used as a "tool" for this: 
• The quotient between modulation transfer functions (same source) at two observation 
positions supposed to be within the same subsystem, should be flat and not differ to 
much from unity, up to a frequency above the crossover frequency. 
• The slopes of the amplitude and phase-function of the high frequency asymptote of a 
power-energy transfer function in the SEA model tell the number of subsystems "in 
between" the observed one and the directly driven. 



6. Propagation delay between subsystems 

In the SEA power balance equations for two coupled rooms, the energy incident to the 
coupling area is assumed to be immediately available for absorption and transmission 
by the other system. But physically this is not the case due to the finite energy velocity. 
Assume there is a delay At between the subsystems which is estimated by the travel 
time between the centroids of the systems (Lyle 1981) Then in the power balance of 
system 2, Ex (/) should be replaced by Ex (t - At) (and in the balance of system 1, 
E2(t) by E2(t- At)). In the frequency domain this corresponds to a multiplication 

by e'-^and then 

__ÜVfei—e-m (15) 

jQ+o)0tj2 

To make (IS) a minimum-phase-shift function, a phase lead compensation, eJ 4, 
could be introduced. This is done in an experiment with two coupled rooms, see next 
section. 

7. Airborne sound insulation measurement 

In the International Standard for measurements of airborne sound insulation between 
rooms, ISO 140-3, the equivalent absorption area in the receiver room is evaluated from 
a separate measurement of e.g. the reverberation time. Additionally, if the background 
level in the receiving room is larger than the sound pressure level due to the sound 
source, a precise value of the latter cannot be determined. However the estimation of the 
equivalent absorption area is time consuming and the desire to get received sound 
levels 10 dB above the background noise level makes demands upon the source. 

The energy density in a wave is 1/c and the total energy in the receiving room 
is/2 (t)V lc. Under the assumption of diffuse sound fields, the power balance equation 
for the receiving room in a specific frequency band is: 

d(I. 2(0„L/.(0 c, hit) V\ = ^-S-T-^»A (16.) 
c     )      4 4 

Taking the Fourier transform of (16) one obtains: 

ja.!mv=lms.T.LmA (17, 
c A 4 

Rearranging (17) yields: 
S'C' x 

4M = ^E_ (180 
J      4V 

Let 



(CMTF(n,r0))2l 

(GMZF(tV0))n 
be fitted to (9). Identification yields: 

bAV 

(and-do 
aAV 

r<->- 
Sc 

(19.) 

(20.) 

7.1. EXPERIMENTS IN TWO COUPLED ROOMS 

Twelve observation positions in each room were used and one source position. The 
pressure impulse-responses in the standardised one-third octave bands with centre 
frequencies 100 to 3150 Hz were measured. The test signal was a maximum length 
sequence of length 6S535. It is deterministic and periodic and its period length is 
matched to the record length of the analyser. The sampling frequency in the bands 100 - 
800 Hz was 4000 Hz and the record length 16.384 s giving a frequency resolution of 
0.061 Hz. 
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Figure 6. The quotient (19) in a specific band and a least-square fit 
The impulse-responses were post-processed in Matlab according to eq. (7) by 
CMTF=fft(h.A2); In figure 6, the solid line is the mean of the CMTF.s in the receiving 
room divided by the mean of the CMTF:s in the driving room. The model first order 
curve, denoted by the dash line, is fitted to the low frequency part of the solid line using 
the function invfreqs in Matlab Signal Processing Toolbox: 
[b^]=invfreqs(mean(CMTF21(l:n))./mean(CMTFll(l:n)),w(l:n),0,l); b and a will 
contain the coefficients of the numerator and denominator polynomials, respectively, w 



is the frequency vector and "0" and "1" specify the desired orders of the numerator and 
denominator polynomials. The CMTF.s are truncated at n, corresponding to the 
frequency where the phase-function is approximately -«74. 

In another computation, a phase lead compensation, eiat*, where the delay was put 
to fA = 7.8 / 340s, was multiplied with (19) before the fit procedure. In figure 7 and 8 
the corresponding results are denoted "compensated". 
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Figure 7. The transmission coefficient 

The results of the CMTF method are systematically smaller than those from ISO 140-3, 
with exception of the bands 100 Hz and 1600 Hz. 
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Figure 8. The equivalent absorption area. 

The linear system description provides the opportunity for reducing the influence of 
the background noise and narrow-band analysis, see figure 9. 
Rel. amplitude (-) R»l, amplitude (•) 

oU . , . ,10' 
0 0.5 1 1.5 2 

time (>) Frequency (Hz) 
Figure 9. Left: Increasing the Signal-to-Noise Ratio by time averaging N times. The graphs show the 
impulse-response (envelopes smoothed) in a position in the receiving room, in a one-third octave band 
with centre frequency 1000 Hz. The SNR whenN=l is equal to -8 dB. 

(lz<""of)21 
Right: -i »^^-wh^Z are the acousu^ transfer imr>edances. The exp^ 

(|z(».r0)|  )H 

smoothed with a sweeping Gauss-window of constant-percentage bandwidth (3 %)■ 
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APPENDIX 

Proceeding in a manner indicated by (6) it can be shown that the ensemble 
average is 

£ {11(0} = (ihin*hBP)hBP)*coi &{t) (Al) 

Then in the frequency domain, the quotient between the kinetic energy density 
and the input power is equal to: 

?{§(*.♦*»,)*} 
?{((*!.•*«. )*J] 

where ? is the Fourieroperator and p the density. 
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Figure Al. J\\(tyB * hgp )hßp )j. From experiments on a steel-plate of area 1.7 m* and 

thickness 2 mm. 
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AN INDICATOR OF COUPLING STRENGTH BETWEEN SEA SUBSYSTEMS 

F.J.FAHY P.P.JAMES 
ISVR SocUti Europienne de 
University of Southampton Propulsion, 
Southampton SOI 71BJ, UK Vernon, France 

1.    Introduction 

A judicious choice of subsystems for an SEA model is essential to the reliability of both 
theoretical and experimental applications of SEA. Although there exist no universally 
established criteria or guidelines on which to base this crucial fundamental decision, it is 
generally recommended that the chosen subsystems should be 'weakly coupled' to their 
immediate neighbours. Here too, there is no universally accepted definition or criterion 
of 'weak' coupling [1], Among previously proposed weak-coupling conditions are the 
following: (i) coupling loss factors (CLFs) of a subsystem much smaller than its internal 
(dissipation) loss factor [2]; (ii) wave power transmission coefficient zy across a 
subsystem interface much less than unity; (iii) Tifii?M$Aj « 1, where Mi denotes 
modal overlap factor of subsystem i [3,4]; (iv) Green functions (or frequency response 
functions) of an uncoupled subsystem little affected by coupling to the rest of the system 

Although it is not clear which, if any, of these is most the appropriate, the 
desiderata associated with weak coupling may be expressed in qualitative terms as 
follows: (i) a substantial difference between the modal-average energy of a subsystem 
which directly receives input power form an external source and that of any other 
subsystem which is not directly excited; (ii) coupling loss factors between directly 
coupled subsystems much greater than those between subsystems separated by other 
interposed subsystems; (iii) frequency-average coupling loss factors which correspond 
closely with those based upon the wave power transmission coefficients between the 
corresponding infinitely extended (non-modal) subsystems; (iv) coupling loss factors 
insensitive to subsystem damping. 

These conditions militate against the existence of 'global' modes which have 
significantly different natural frequencies from those of the uncoupled subsystems and in 
which modal energy is distributed over two or more subsystems. Under conditions of 
weak coupling, the system modes are localised' in the sense that they closely resemble in 
natural frequency and shape the modes of the uncoupled subsystems (given the 
appropriate boundary conditions), and that their energies reside principally within the 
corresponding subsystems. The modes of many practical structures, particularly those 
which are highly non-uniform (e.g. beam-stiffened), constitute a mix of global and local 
modes, a state which offers a serious difficulty for SEA modellers (this problem is 
currently being addressed by the development of hybrid global/local models). 
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2.    Coupling strength and experimental SEA 

Experimental SEA has two principal modes of application: (i) Determination of internal 
and coupling loss factors on the basis of controlled excitations: (ii) Inference of input 
powers on the basis of an SEA model derived in the laboratory together with estimates of 
subsystem response energies derived from vibration measurements made during system 
operation [7]. 

The first mode is implemented by means of the power injection technique, in 
which broad band forces are applied sequentially at a number of different points on each 
subsystem and, for each input point, the resulting responses are measured at a rather large 
number of points on each subsystem. The power inputs and response energies are 
estimated from signals generated by force and acceleration transducers. Alternatively, 
the equivalent powers and energies are derived from the Fourier transforms of applied 
impulsive forces and the resulting transient responses. Determination of the loss factors 
requires inversion of the matrix of estimated energies. Strong coupling between selected 
subsystems produces a matrix which is ill-conditioned for inversion because the 
associated subsystems tend to a state of equipartition of modal energy, and some of the 
off-diagonal elements can equal, or even exceed, the diagonal elements. The elements of 
the energy matrix are subject to uncertainty associated with spatial sampling error, 
spectral estimation error and with the assumption of equivalent mass which is employed 
to convert estimates of measured response velocities to kinetic energy. This uncertainty 
is propagated throughout the inverted matrix and often leads to serious errors in the 
estimates of loss factors: it is not uncommon for negative loss factors to emerge. 

Strong coupling between any one or more pairs of subsystems is clearly 
undesirable. Unfortunately, the presence of strong coupling is usually detected only after 
a lengthy, time consuming measurement exercise has been completed. The following 
sections describe the results of an attempt to develop a rapid, preliminary test for 
subsystem coupling strength which is applied prior to implementation of the power 
injection method. The aim is to provide SEA experimenters with an indicator which 
'sounds the alarm' when strong coupling is detected. 

3.    Energy impulse response 

At the beginning of the research programme which led to the development of the 
indicator proposed herein it was decided that the most appropriate of the previously 
mentioned conditions associated with a state of weak coupling is that of Langley [5,6], 
since it relates to the existence, or otherwise, of global modes which involve highly 
correlated motions in two, or more, contiguous subsystems. This condition violates one 
of the principal assumptions of SEA, namely that all modal responses are uncorrelated. 
The employment of a number of 'randomly* located excitation points on each subsystem 
may provide an approximation to uncorrelated modal forces, as required by SEA theory, 
but it does nothing to mitigate the disruptive effect of the presence of global modes. 
[Note: it is not appropriate to attempt to overcome this difficulty by an appeal to notions 
of ensemble statistics in relation to tests on single physical samples]. 
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However, it is not practicable to attempt to quantify the effect of subsystem 
coupling on Green functions in the frequency domain [8]. Uncoupled subsystems are not 
usually available and the question of appropriate boundary conditions is problematic. 
Consequently, attention has been directed to the response behaviour in the time domain. 
It seemed likely, on physical grounds, that the impulse response of a directly-excited 
subsystem would closely resemble that of another subsystem to which it is strongly 
coupled, but would differ significantly from that of another subsystem to which it is 
weakly coupled in terms of the wave power transmission coefficient This 'hunch* was 
partly stimulated by the results of early work on the impulse response behaviour of 
coupled oscillators [9,10] and more recent work on transient SEA by Pinnington and 
Lednik [11]. A programme was initiated to investigate whether the postulated difference 
exists and, if so, how it could be quantified to form the basis of an 'indicator' of coupling 
strength. 

SEA employs subsystem energy as the expression of vibrational state, and 
because it common practice to measure structural response with accelerometers, from 
which kinetic energy density can be estimated, it was decided to investigate by means of 
theoretical analysis the temporal evolution of the kinetic energies of a number of simple 
subsystems consequent upon impulsive excitation. Vibrational kinetic energy is an 
oscillatory quantity, unlike total energy, so it was necessary to devise a procedure for 
suppressing these oscillations, while retaining the longer-time-scale evolution of the total 
energy. The impulse responses were Fourier Transformed, band-pass filtered and Inverse 
Fourier Transformed; the resulting filtered impulse responses were squared, scaled 
appropriately to give subsystem energies, and the time-histories of the kinetic energy 
were integrated over a time interval which was twenty times the inverse of the lower 
frequency limit of the band: the start of this time interval was moved along the time axis 
to produce a 'temporal moving average', or envelope, of the kinetic energy: examples are 
presented in Fig. 1. [Note: the integration interval was selected an an ad hoc basis.] 

4.    Theoretical models 

Systematic parametric studies have been made of a number of models of idealised 
subsystems of which the vibrational behaviour admits closed form analytic solutions [8]. 
The first model comprises a pair of uniform elastic rods of length, supporting quasi- 
longitudinal waves. Each rod is clamped at one end and coupled at the other end by an 
elastic spring of which the strength is systematically increased. One subsystem is 
subjected to an Dirac force impulse. When the spring is very strong, the energy impulse 
responses of both subsystems exhibit the simple exponential decay; with very weak 
coupling, the energy impulse response of the indirectly-excited rod exhibits a clear build 
up to a peak, followed by a decay, as shown in Fig. 1. The time delay to the peak is 
normalised on the characteristic time for wave energy to travel the length of the excited 
rod; it is denoted by 8. 

A study of the variation of 8 with non-dimensional spring strength K for a rod 
length ratio of 3/7 shows that, over a large range of 'low' spring stiffness, 8 remains 
constant. As the spring stiffness is increased beyond a certain value, 9 falls rather 
rapidly and approaches zero, as shown in Fig. 2. Analysis of the natural frequencies and 
mode shapes of the coupled system shows that in the range of K when 8 falls sharply, 
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the vibrational behaviour of the system changes from that of two c^P^^J™* J° * 
Se Sjä5ampe4 rod, suggesting that the fall in 6 ^ *"£? J^Jg 
to clobal modal behaviour. Fig. 2 also shows the variation of0 with if for a *oajengui 
^£SnaT£S^9 remains close to zero over the whole range ofspnng strength 
sXeouent studii SedShe reason for this marked difference in behaviour h<* «* 
«Ä Sa\ ^^coincidence between the natural frequencies of at least one pair of 
Se ÄÄ "odes of the rods in the first case, but no,n the^coni 
The timihistories of the power transferred from the directly-dnven rod to odier rod m the 
JJo S is Felted in Hg. 3; there is a clear morphological and quantitative distinction 
between the two forms. 

The variation of 0 with coupling spring stiffness was also studiedI for^ pairsof 
subsystems consisting of beams and also pairs of thin flat, rectangular P^ J^ ™ 
characteristic fall which was assumed to indicate the transition between weak (local 
Z5S%«£i (global mode) behaviour, is observed in *~2*£££ 
coincidence exists between at least one pair of uncoupled"^Jgg*^- 
Also studied was a system consisting of two end-connected rods of <kfferen\cross 
sUtional area which support quasi-longitudinal waves. Conditional upon modal 
Sdence', the transitional fall in0 is observed, the value approaching zero for ar,.area 
Sfotfmty (no discontinuity). The relevant uncoupled natural frequencies are tiiose 
corresponding to a free boundary condition at tire coupled end for tire ***"££ £ 
fixed boundary condition for the thinner rod. This observation is ^P^**""** 
demonstrates that the definition of 'uncoupled' in the present context depends upon the 
form of constraint offered by one subsystem to the other when coupled. 

The fact that no significant time delay to the peak of the enerp impulse is 
observed if modal coincidence does not occur in a selected frequency band, fwwever 
weaTthe coupling, would appear to present a serious obstacle to the feasibility of basing 
Ä£Ä Supling strength on this delay. Subsequent studies, however, indicate 
that the problem is more of academic interest than practical significance. 

5.    An indicator of coupling strength 

Although the non-dimensional time delay to the peak of the kinetic energy impulse 
response is sensitive to coupling strength, subject to satisfaction of the condiüon of modal 
coincidence, it is also sensitive to subsystem damping Since the purpose of theresearch 
was to seek a universal indicator of coupling strength which exclusively relates to toe 
facility with which waves cross subsystem interfaces, it was necessary to suppress uie 
effect of subsystem damping. This was achieved by defining a new £°£Z™^ 
quantity denoted by Cs as illustrated by Fig. 4. Evaluation of Cs for the idealised 
systems described above revealed a remarkable degree of uniformity of forrr.and1 of 
values associated with very weak coupling, irrespective of system topology and wave 
type, as illustrated by Fig. 5, and a fair degree of immunity to large changes of damping 
(Fig 6) On the basis of these analyses, we postulate a 'threshold for Cs of U.U7, ana 
suggest that values below this serve a warning that the choice of subsystems may not be 
appropriate. 

6.    The modal coincidence problem 
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SsS and that a sufficient degree of modal proximity, may be sufficient 

oSus^ 3" °f a««**1 studies °f to phen°menon ^ ^made m orf 
to develop a proximity criterion. 

As a prelude to the analysis of extended, multi-mode subsystems, the behaviour 
of CS fot^ pK cSipled, viscously damped, spring-coupled oscillators has been 
analysed The variation of Cs with the strength of the coupling spring has been evaluated 
foSe of dTping ratios representative of those exhibited by practical strucjires 
Se raÄnSJnatural fluencies has been varied by varying; the> ma*^the 
üidirectlv-excited oscillator. Examples of the results are shown in Fig. 7. The upper 
SmS of cfis ^ery similar to mat for rods, beams and plates. The frequency ratio 
Sow which Cs falls below 0.07, even with weak damping, decreases as damping is 
hxrir The most significant feature is the confluence of all curves close;to» tite 
oroSsed'threshold of 0.07. For a given damping, the value of spring strength 
S»nd*g to the threshold value of Cs does not change with frequency mü«.This 
characteristic reinforces the argument for the selection of this threshold value and for Q 
as a valid indicator of the transition from strong to weak coupling However^,.ftg. 7 
does suggest that the value of spring strength which corresponds to this threshold js 
Svf «o damping: the implication is that coupling strength (in the present sense) 
produced by a given spring can be weakened by increasing subsystem damping. 

A similar analysis has been carried out for two rectangular flat plates of equal 
width plates coupled along the interface by a combination of linear and «orsional lme 
springs Because of the multi-mode nature of this system it is not possible to vary the 
Squlncy ratio systematically as it is for discrete oscillators; consequent!)-the^vanauon 
ofCc for two different plate length ratios was investigated. It was found that the value of 
the indicator varied considerably with locations of the points of force input and response 
moment: consequently, a set of values for twenty five different combinaüons of 
input and output locations was computed. The mean and 90% confidence limits of Cs are 
presented in Fig. 8; the former as functions of the strength of the torsional coupling spring 
Stl same confluence behaviour as the oscillators. The damping couW not be 
varied for reasons of unacceptable demands in computer run time. The observed spatial 
variability suggests that it may be necessary to measure Cs at a number of points in 
experimental evaluations. 

The principal conclusion from these analyses is that if modal proximity is adequate to 
ensure thatCs is greater than 0.07 in the case of very weak coupling, it will ensure that 
it is remains above this threshold if coupling is not strong. The vital ™P^ott*™l 
modal proximity criterion can be validly derived on the basis of models incorporating 
very weak coupling which are amenable to analytic approximauons. 
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7.    Derivation of a modal proximity criterion 

7.1. WEAKLY-COUPLED OSCILLATORS 

A closed form analytic solution is available for the impulse ^ponse■«"£***; 
coupled oscillators in the limit of vanishingly small coupling [12]. ^1S «Pf^°"Jg? 
toS evaluate Cs as a function of the four variables Wjl*J££ 
represent the uncoupled natural frequencies and damping raüos of **»™££ 
Combinations of these variables are sought that produce a vdue of C, wh ch excee* 
nrn with verv weak coupling: the associated domain is defined as that ot moaai 
nZZ«V $9 rTJ?Zu if to tonpw raüos are held constant, the boundaries of 

expands as damping is increased. With Cs as a funcüon of three vanab e the^undary 
of the domain of modal proximity can be determined as a surface, as illustrated by Fig. 
10. Modal proximity is clearly related to combined oscdlator bandwidth. 

7.2 WEAKLY-COUPLED MULTI-MODE SUBSYSTEMS 

A deterministic form of analysis is not appropriate to a^-"*"^ ^"^ 
cannot be generalised. Hence a statistical approach was adopted with subsysKm 
SyTptotic Si densities and modal-average loss factors as independent vanables^ The 
Slaty ofoccurrence degree of modal proximity in a frequency band IS determined 
hv Se probability distribution of the minimum difference between uncoupled mode 
SturaW™quenctes. On the basis of the conventional SEA^umpUonof unrfonn 
probability of occurrence of a natural frequency within a Pven ftequenqHbanda Monte 
Carlo simulation procedure was used to generate frequency seP^üo^toüsücs for two 
fndependent distributions. The generated distribution closey '^mbled a gamma 
distribution having both mean and standard deviation given by \/2NiN2, where N,niUie 
expected number of natural frequencies in band«; this, of course,depends upon modal 
SrZ£fe£l bandwidth* Hence the frequency separation AO» ^^Sw 
90% cumulative probability may be defined; this also depends upon bandwidth. Finally, 
a Modal Proximity Indicator may be defined as 

Mp = (Omin min (ll-*ll •/ '"*2/^ ^90 

where*, and x2 are the frequency ratios which bound the modal proximity domain for 
the given assumed or measured loss factors (as shown in Fig.10) and %«« is trie lower 
limit of the selected frequency band. If Mp is greater than unity, a value^soi^üm 
0.07 indicates the existence of strong coupling at a confidence level of 90%. Note that Mp 

is sensitive to damping through x\ and x2. 

8. Some tests of Mp 

As mentioned in Section 4, values of Cs have been determined for various models of 
coupled idealised subsystems. Calculations of Mp for weakly coupled rods and beams 
produced values much less than unity, thereby confirming the observed sensitivity to 
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small geometric variations associated with low modal density which «*»£* 

Sates of Csfor one pair of input and response points suggested *at itjw, mfact 
sensitive to such variations [8]. Subsequent estimates of the values of Csa25paus^f 
Sut and response points on the plate yielded 90% confidence limits of 0.079 and 0.188, 
which clearly indicates adequate modal proximity. 

Experiments on a pair of flat steel plates coupled by a variable number of short 
steel straps^snowed C% be a stable and reliable indicator tfe^ 
which was insensitive to a range of selected bandwidths of between 50 and 200Hz, and 
Äe SS ofT% of plate mass in the form of a <»*^™"£Z£ 
tetween 2 in a 200 Hz band centred on 200Hz and 278 in the same bandwidth centred on 
6900 Hz, confirming a high degree of modal proximity. 

9. Conclusion 

A novel indicator of coupling strength between SEA subsystems, deno^byC, is 
oroDOsed It is rapidly determined from the band-filtered impulse response of a 
Kstems when mdiLtly excited by another subsystem which is directly^excited 
TbSSri and experimental evidence suggests that Cs for a P^ular subsy ten^.should 
be determined at a number of points on any one subsyste*»^*ff£££ °WS 
temporal evolution of the subsystem energy. Cs exhibits a form of variation jvun 
«moUnE strength which appears to be universal and independent of subsystem form and 
Xe^e^neupTrvalTZsociated with very weak coupling also seems to vary h tie 
toqSmu£Cn. provided that a modal proximity criterion is satisfied as mdicated 
HiSal proximity indicator denoted by Mp which can be evaluated from eaunates of 
the modal densities and loss factors of the subsystems concerned. Provided that Mp is 
greater than unity, a value of Cs below a defined threshold value indicates the ex« 
s*ong coupling between selected subsystems in the form of ^^^^ 
is not conducive to accurate experimental determinations of sfAg™**"°[£. 
accurate theoretical SEA response predictions. An SEA model which exhibits this 
SSour should be modified to integrate strongly coupled subsystems into one 
subsystem. 
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Fig.l Kinetic energy impulse responses for weakly coupled subsystems: (a) directly-driven 
subsystem; (b) indirecüy-driven subsystem. 
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Fig.2  Variation of 8 with non-dimensional coupling spring strength K 

for rods of length ratios 3/7 (A) and 1/2 (O). 

0.020 

|       0.015 

&«   0.010 
o «o 

■S 8   0.005 

S-g o.ooo 
.•§ c -0.005 

a      -0.010 
s 

-0.015 
100 200 300 

Non-dimensional time 

400 

100 200 300 400 500 

Non-dimensional time 

Fig.3 Temporal variation of transmitted power: (a) length ratio W. (b) length ratio 1/2. 
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Fig.7 Variation of Cs with non-dimensional coupling stiffness for a range of ratios of uncoupled 
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Fig.8 Variation of mean and 90% confidence interval of Cs for coupled plates with non- 
dimensional coupling spring strength for two plate length ratios. 
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Fig.9 Frequency ratio bounds for modal proximity as a function of frequency for weakly coupled 
oscillators. 
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1. Abstract 

This paper deals with the statistical aspects of the Power Injection Method (PIM), a 
well-established technique to experimentally derive the SEA loss factor model. It is 
outlined how the variances of the energies measured in the power injection process can 
be obtained and how approximate analytical expressions describing the propagation of 
the energy variances through the loss factor calculation can be derived based on a first 
order Taylor expansion. The expressions giving the loss factor variances as functions 
of the energy variances offer the practical advantage that they can be quickly evaluated 
during the acquisition process. Subsequently, it is discussed how the confidence levels 
of the SEA predictions can be obtained. The practical usefulness and limitations of the 
derived analytical expressions are investigated based on a Monte-Carlo variability 
analysis. The statistical theory is then applied to a railway carriage of a high-speed 
train, illustrating how the effectiveness of loss factor modifications can be evaluated in 
terms of confidence levels. 

2. Introduction 

SEA is a high-frequency vibro-acoustic modeling technique which works with the 
averaged response taken in the time, frequency and spatial domain instead of local 
response variables. The successful application of SEA relies on a high modal density 
and high modal overlap to ensure that the average is a useful and reasonably accurate 
quantity [1]. SEA adopts the concept that the time averaged net power flow between 
two subsystems varies at a rate proportional to the difference in modal energy in a 
given frequency band and that the time averaged power internally dissipated in a 
subsystem is proportional to the total energy level of this subsystem. Both assumptions 
of proportionality give rise to the coupling and the internal  loss factors which 



constitute the basic SEA model. The global SEA equation is obtained by balancing the 
time averaged external power input to each subsystem with the power dissipated in the 
subsystem and the net power flows to the coupled subsystems. This results in the 
following equation: 
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where N is the total number of subsystems, E( represents the time averaged total energy 
of the i-th subsystem, P; is the time averaged power input to the i-th subsystem, co is the 
radian center band frequency, f\ti is the coupling loss factor between subsystems i and j 
and Tlii is the internal loss factor of subsystem i. The matrix [L] in equation (I), 
composed of the internal and coupling loss factors, is further referred to as the total 
loss factor matrix. 

The Power Injection Method (PIM) is the most widely used technique to 
experimentally derive the SEA loss factor model without the need to disassemble the 
structure into components [2]. It basically comes down to exciting each subsystem in 
turn and measuring the response energies on all subsystems. The difficulty that arises 
in the experimental approach is the measurement of the total resonant energy of the 
i-th subsystem, Ey, due to excitation in subsystem j. In order to cope with this, the 

vibrating or acoustical field is sampled at several discrete points. The measured point 
velocities or pressures are squared and spatially averaged to respectively yield the space 

averaged square velocity (xn or pressure (pf-). The brackets <> denote the spatial 

averaging. For sake of simplicity, the variable (üy \ is introduced which represents 

Ix?) in case of a structural subsystem and (pi) in case of an acoustical subsystem. 

The energy of the i-th subsystem due to excitation in the j-th subsystem is then 

estimated by multiplying (RA with the total subsystem mass Mi or the subsystem 

volume Vj : 

Ev = M,(jfy) (structural) or En = V,(/?^—- (acoustical) 

where p is the medium (mostly air) density and c the sound velocity in the medium. 
The total subsystem mass, Mi, in equation (2) can only be used in the calculation of the 
total energy for uniform structures of constant thickness (plate) or cross-section 



(beam). In order to overcome this, it has been suggested to use the "equivalent" 
mass/volume in equations (2,3) instead of the real mass/volume [3]. 

The loss factors can be derived from the PIM-energies as follows [4]: 
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where £" = —- denotes the normalized energy in subsystem i due to power input, P,, 

"      PJ 
in subsystem j. 

Approximate formulas can also be derived on the basis that the energy in non-driven 
subsystems is significantly lower than in the directly driven subsystem (weak coupling 
assumption), guaranteeing positive loss factor values [5] : 
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An important aspect of equation (5) is that it enables the coupling loss factors between 
two coupled subsystems to be calculated from measurements made only on those two 
subsystems, regardless of the other subsystems. 

3.   The Statistical Aspects of PIM 

In the power injection process, each subsystem is excited at 3 or more points chosen at 
random in order to simulate statistical independence of the modes [2]. The responses at 
different locations are measured for each subsystem. Typically, about 5 to 10 response 
points per subsystem are measured. The square velocities/pressures are individually 
normalized by unity input power, subsequently linearly averaged and multiplied by the 
mass/volume, yielding the normalized energies Eny appearing in equations (4) and 
(5,6). 

The accuracy of the experimental SEA model will depend on the specific number of 
excitation and response points chosen on each subsystem. There will always be a 
certain spread associated with the normalized space averaged square velocity/pressure 
<R"jj> due to the averaging of a finite number of values. Therefore, it is meaningful to 
calculate the associated confidence levels of <R"ij> and to comprehend how these 
confidence levels can be translated into the confidence levels of the loss factors. 



3.1. THE MEAN AND VARIANCE OF THE POPULATION OF THE 
NORMALIZED RESPONSES 

The population of normalized square velocities/pressures which are dealt with in PIM 
are infinite because of an infinite number of potential excitation and response points. 
From the measurements, only a sample of normalized responses is obtained, each 
corresponding to a specific excitation and response point. If Rnjj.pi] denotes the 
normalized square velocity/pressure measured at response location p of the i-th 
subsystem due to excitation at location q of the j-th subsystem, the mean value and the 
variance of the population of the normalized square velocities/pressures of subsystem i 
for excitation in subsystem j can be estimated as follows [6]: 

1       "*"**   „ O) 
ix „ =/?•' =——-    I I* a,p<i iJ NrespNilip q=\ P=\ 

1        ",,,,,*„.„, _ (8) 

where Nresp is the number of response locations of response subsystem i and Ninp the 
number of excitation locations of the excited subsystem j. The overbar denotes the 
estimated mean value. Jt corresponds to the brackets < > denoting the spatial 
averaging, i.e. <Rn

u> = Rnjj. Note the difference in annotation between the (unknown) 
mean and variance representing the entire population, respectively denoted by the 
Greek letters \i (population mean) and a (population variance) and the mean and 
variance estimated from a sample of quantitative data (R"ij.pq for p = 1 ... Nresp, q = 1 
...Ni„p) respectively designated by the overbar (sample mean) and the Roman letter 
s2 (sample variance). The sample standard deviation, s, is the non-negative square root 
of the sample variance. It is a measure of spread expressed in the units of the original 
data. The relative standard deviation which allows comparison of the spread of 
different data sets on a relative basis is defined as the ratio between the standard 
deviation and the mean. 

3.2. THE VARIANCE OF THE NORMALIZED ENERGIES 

For experimental SEA, the main result of interest is not the estimated mean and 
variance of the population of the normalized responses as such, but rather the mean 
and the variance of the space averaged square velocity/pressure <R"ij> or the sample 
mean £"„. In other words, what is e.g. the 90% interval bracketing the unknown mean 
of the entire (infinite) population of the normalized responses. 

The Central Limit Theorem says that, for a large number of samples NrespNilM, , the 
sample mean   Rnjj is approximately normally distributed with the mean \i R„ and a 

variance given by 
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The interval  [R" -1.645s.,, /?," +1.645s5.]  brackets the unknown mean with 

90% interval. 

Assuming then that there is no uncertainty on the subsystem mass/volume, the 
estimated variance of the normalized energies is given by 

V2    ^ (10,11) 
sl„=M2s2   (structural) or si, =^-rr   (acoustical) 

It can be shown that, from an experimental point of view, the assumption of no 
uncertainty on the mass/volume is justified when computing the variances of the loss 
factors. Reason hereto is the fact that the mass/volume of the i-th subsystem is actually 
a scaling factor for the loss factors Tiy for j =1 .. N [7,8]. 

4.   The Calculation of the Variances of the Loss Factors 

The objective is now to study the transmission of the variances of the normalized 
energies through the loss factor calculation. Two methods can be distinguished to 
calculate the loss factor variances. On the one hand, the application of the statistical 
propagation of error formulas giving an approximate analytical expression for the loss 
factor variance as function of the variances of the normalized energies. These 
expressions can be quickly evaluated during the acquisition process. On the other 
hand, based on a Monte-Carlo variability analysis which requires much more 
computational effort and time, but offers the advantage to be more accurate if a 
sufficiently high number of experiments are evaluated. The statistical Monte-Carlo 
method also provides the possibility to evaluate the probability distribution of the loss 
factors. 

4.1. ANALYTICAL APPROACH 

The variance calculation for the loss factors derived from either full matrix inversion 
(see equation (4)) or from approximate formulas (see equations (5,6)) is outlined. 

4.1.1.     Full Matrix Inversion 

The loss factors are estimated through the inverse of the normalized energy matrix. 
The statistical transmission of variance or propagation of error formula says that the 
mean of the loss factors can be approximated by evaluating equation (4) for the 
estimated mean of the normalized energies and that, based on performing a first order 
Taylor expansion, the variance of the total loss factor ly is approximately given by : 
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It can then be shown that the variance associated with the coupling loss factor between 
subsystems i and j is given by [9]: 
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In case of weak coupling, the major contribution to the variance of the coupling loss 
factor Tiij will occur if k=j and if I=i as then the product of two total loss factors ln and 
Iji occurs. This means that it is important that the variance of the normalized energy 
Enji is low to get a high precision for the loss factor % Formula (13) also shows that in 
case of strong couplings, the variance will be higher in comparison with weak 
coupling. 

Similar to the derivation of expression (13), it can be shown that the variance of the 
internal loss factor of subsystem i is given by [8]: 

1   N N . _    ,   , (14) 
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4.1.2.    Approximate Formulas 

The propagation of error formula can also be applied to equations (5,6), giving a good 
approximation for the loss factors in case of weakly coupled subsystems. By performing 
the first order Taylor expansion, the following expressions can be derived for 
respectively the coupling and the internal loss factor [7] : 
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One should realize that the formulas (15,16) describe how variability of error is 
propagated or transmitted through a mathematical function. In this case, the 
mathematical formula is an approximate method to compute the loss factors. The 
formulas will not take into account the bias error made due to using the approximate 
loss factor calculation instead of the full matrix inversion. This error is however of 
second order and typically, the approximation will result in a slight overestimation of 
the loss factors. The quality of the approximate loss factor calculation can be assessed 
by synthesizing the energies and comparing these with the measured energies obtained 
from the PIM tests [10]. 

4.1.3.     Usefulness of the analytical expressions 

The approximate analytical expressions transforming the variances of the normalized 
energies into variances of the loss factors are extremely helpful to decide whether or 
not PIM measurements can be terminated. By analyzing the different contributions to 
the loss factor variance, it can be seen which critical subsystems require a higher 
discrete spatial sampling of the response field. The confidence levels also contribute to 
gaining more insight about the sub-division into subsystems, the key-stage in the whole 
SEA-process. As SEA deals with the reverberant response field, one would expect that 
the spread of the normalized point responses within the same subsystem is quite low. 



The latter implies that the variance of the population of the normalized square 
velocities/pressures given by equation (8), is low. A fairly low number of excitation and 
response points is then sufficient to accurately estimate the true average. A high 
variance of the normalized energy for a reasonable number of excitation and response 
points might indicate that the subsystem division does not comply with the SEA basic 
assumptions. From equation (9), it can be seen that increasing the number of excitation 
and response points will narrow down the confidence interval, but precautions have to 
be taken with this. In case of large spread of the responses within the same subsystem, 
it might be more meaningful to re-partition the subsystem into smaller subsystems, 
having a response population with a lower variance. 

4.2. THE MONTE-CARLO APPROACH 

The Monte-Carlo method computes the loss factor mean and the loss factor variance 
based on conducting experiments or simulations. In each experiment, the normalized 
energies are perturbed conform to a normal or Gaussian distribution having the sample 

mean   E", and sample variance s2„. It is assumed that each term of the normalized 

energy matrix can be independently perturbed. The loss factor calculation is then 
performed for a vast amount of possible combinations of disturbances of the 
normalized energies. In case M evaluations are carried out, for each loss factor, M 
values will be produced, T|j,.,r|?,Ti?-,...r|^ . The mean of the loss factor is then estimated 

by 

1   »   k (17) 
— Sir MA W-TT.*!* 

and the variance is given by 

Contrary to the analytical expressions which yield approximations for the loss factor 
mean and variance, if the number of simulations M is sufficiently high, an accurate 
result for the loss factor mean and variance is obtained. Additionally, the data set, 
n1 n2 n3     r\M. allows to compute the probability histogram for each loss factor 
'\ij>'\ij<'\ijT"'\ij 

which can be visualized to check whether a normally distributed population is found. 
The disadvantage of the Monte-Carlo approach however lies within the significant 
amount of computation time in case the number of subsystems included in the SEA- 
model becomes large. In case of N-subsystems, N2 variables can be independently 
perturbed in each experiment and it can be easily understood that the number of 
experiments, M, should be much larger than N2 in order to get reliable estimates. 



5.   The Variance of the SEA Predictions 

Assuming that the operational power inputs into different subsystems are given, the 
mean energy level of each subsystem can be estimated by applying the SEA power 
balance equation: 

1   -   , (19) 
[T1 {/>,„«} \Eoper)z 

0) 

where { Eop„} represents the mean levels of the predicted response energies and (Pop) 
is the known operational input power vector. As the loss factors are experimentally 
identified by inverting the normalized energy matrix as expressed by equation (4), it is 
more convenient to rewrite equation (19) in terms of the normalized energies which 
were measured in the power injection process: 

_ _ _ N _ (20) 
{EtlIKr}=[E"){Pl>pJ   or   £,^r =££;/>,,,,,,, 

*=i 

Consequently, the variance of the predicted energy level of subsystem i is given by 

0 N    1        2 (21) 

v2 - Vt2    P 

k=\ 

As equation (20) is a linear equation, the probability distribution of the predicted 
operational energy will be normal if the normalized PIM-energies are normally 
distributed. 

6.   Test Results and Discussions 

6.1. EVALUATION OF THE ACCURACY OF THE ANALYTICAL VARIANCE 
EXPRESSIONS BASED ON A MONTE-CARLO VARIABILITY 
ANALYSIS 

In order to assess the practical usefulness and limitations of the analytical expressions 
which are approximate due to the involved first order Talor expansion in the 
derivation, the analytical formulas were applied to a numerical example and compared 
with the statistical Monte-Carlo approach. The normalized PIM energy matrix of a 6 
fairly weakly coupled subsystem model, resembling a box structure with an opening, 
forms the basis for the numerical simulation. The coupling loss factors are about 6 to 
10 times smaller than the internal loss factors and the weak coupling condition is 
better fulfilled for the higher frequencies. Three cases for the variances of the 
normalized PIM energies were investigated : relative standard deviation of all 
normalized energies equal to 10%, 20% and 30%. Figures 1, 2 and 3 compare the 
relative standard deviation of the internal loss factor rt44 and the coupling loss factor 
ri45 estimated by using equations (14) and (13) with the Monte-Carlo result. The 
number of experiments in the Monte-Carlo approach was chosen equal to 100000, 
guaranteeing a high confidence in the obtained results. It can be clearly observed from 



figure 1 that excellent agreement is obtained in case the relative standard deviation ot 
the PIM energies equals 10%. Figures 2 and 3 show that the analytical expressions are 
less good in case of higher relative standard deviations (20% and 30%).The estimates 
are better for the higher frequencies due to weaker coupling between the subsystems. In 
general, the analytical expressions tend to underestimate the Monte-Carlo variance, but 
the tendency and the relative importance are well predicted. So, from an engineering 
point of view, the analytical expressions yield a useful result and offer the practical 
advantage that they can be quickly evaluated. The histograms of the internal loss factor 
ri44 and the coupling loss factor ru5 have also been evaluated for the one-third octave 
band 1000Hz and are depicted in figures 4 and 5. It can be seen that the loss factor's 
distributions are not completely symmetric anymore, especially in case the relative 
standard deviation of the PIM-energies equals 20% and 30%. However, practically 
speaking, the assumption of a normal distribution with respect to the loss factor 
confidence calculation is adequate. Note also that for some experiments in the Monte- 
Carlo approach, negative loss factors were obtained. 

Figure I: Relative standard deviation of internal loss- 
factor T\jt (upper) and coupling loss factor r\4a 
(lower). Relative standard deviation of PIM-energies 
equal to 10%. Solid line : analytical expressions 
Dotted line : Monte-Carlo approach. 

Figure 2: Relative standard deviation of internal loss 
factor T|« (upper) and coupling loss factor r|j,- 
(lower). Relative standard deviation of PIM-energies 
equal to 20%. Solid line : analytical expressions 
Doited line : Monte-Carlo approach. 

loss factor value 

Figure 3: Relative standard deviation of internal loss 
factor r\44 (upper) and coupling loss factor \\4s 
(lower). Relative standard deviation of PIM-energies 
equal to 30%. Solid line : analytical expressions 
Dotted line : Monte-Carlo approach 

Figure 4: Histogram of the internal loss factor ly« 
for the one-third octave band iOOOHz. Relative 
standard deviation of PIM-energies equal to 10%, 
20% and 30%. 



K 7100. 
0 

a 6000 

B 5000 
B 

-t 4000- 
>. 
g 3000- 

& 2000 
OJ 

£ 1000- 

0       0.01      0.02 0.025 
/ loss factor value 

Figure 5: Histogram of the coupling loss factor T\j-,     Figure 6 : Geometry model of two vertical sections oj 
for the  one-third octave  band  1000Hz.  Relative     railway carriage of the high-speed train, 
standard deviation of PIM-energies equal to 10%. 
20% and 30%. 

6.2. APPLICATION OF THE STATISTICAL FORMULAS TO A RAILWAY 
CARRIAGE OF A HIGH-SPEED TRAIN 

The experimental SEA model of a railway carriage of a high-speed train has been 
derived [11]. Justified by the repetitive nature of the structure, only two adjacent 
vertical sections of the railway carriage were studied. Taking two adjacent sections 
instead of one allowed to investigate the energy transfer in longitudinal direction. The 
two sections were divided in 18 structural components which were the roof, the roof 
edge, the upper part of the side wall, the lower part of the side wall, the wooden floor, 
the supporting steel floor, the supporting beam of the floor, the closing plate of the 
underfloor cavity, the exterior and interior windows and the inner mask around the 
windows. Including the passenger compartment and the underfloor cavity containing 
the auxiliary equipment as 2 acoustical subsystems yielded a SEA model consisting ot 
20 subsystems. A geometry model showing the subsystems of both sections is shown in 
figure 6. 

In the power injection process, each subsystem was excited in 3 different input 
locations while the responses at 5 to 8 locations chosen differently from the input 
locations to exclude nearby field effects were measured for all subsystems. The relative 
standard deviations of the normalized energies (equations (9) and (10,11)) are typically 
in the range of 25 to 35%. Figure 7 depicts the normalized energy in respectively the 
upper part and the lower part of the side wall due to excitation in the upper part of the 
side wall. The 90% confidence levels are computed on the basis of a normal or 
Gaussian distribution. The internal and coupling loss factors were derived based on the 
approximate equations (5,6), assuming that the energy matrix normalized by unit input 
power is diagonal dominant. The obtained loss factors were validated by superposing 
and comparing the measured and the synthesized response energies, confirming that 
the approximate methods gave good results. The confidence levels of the loss factors 
were calculated according to equations (15) and (16). Figures 8 and 9 respectively 
show the internal loss factor for the interior cavity and the coupling loss factor between 



the upper part and lower part of the side wall and their corresponding 90% confidence 
intervals. 

500 1000 
Hz 

Figure 7- Normalized energy and associated 90%     Figure 8: Internal loss factor of the mtenor cavity 
confidence intervals (dotted lines) for the response in     (solid line) and associated 90% confidence interval 
the upper part (solid line) and lower part (dashed    (dotted lines), 
line) of the side wall due to excitation in the upper 
part of the side wall. 

The derived loss factor model was then used to determine the way power flows through 
the structure for known power inputs. Figure 10 depicts the predicted energy level 
(equation (20)) and the associated 90% confidence levels (equation (21)) for the 
interior cavity when input power is applied at the supporting beams of the floor. 
Subsequently, two effective modifications in terms of adding damping treatment were 
determined from sensitivity studies. The internal loss factors of the supporting steel 
floor and the lower part of the side wall were doubled. Figure 10 shows that the 
predicted energy level for the modified structure is significantly lower than the original 
level. 

2500 500 1000 
Hz 

Figure 9: Coupling loss factor between upper part of Figure 10: Predicted energy level (solid line) mid 
side wall and lower part of side wall (solid line) and associated 90% confidence interval (doited hues) for 
the associated 90% confidence interval (dotted the interior cavity due to operational input in the 
w     . beam. The predicted energy level for modification in 

two internal loss factors is superposed (dashed line). 

7.   Summary and Conclusions 

This paper has presented the statistical aspects concerning the Power Injection Method, 
a well-known technique to experimentally derive the loss factors. It has been shown 



that analytical expressions can be deduced describing the loss factor variance in terms 
of the variances of the normalized energies. These formulas are approximate as they 
are based on a first order Taylor expansion. However, a Monte-Carlo variability 
analysis on a numerical example of 6 subsystems points out that they are oi practical 
usefulness The analytical expressions allow a quick assessment ol the confidence 
levels of the variances during the PIM-tests, aiding the user to decide whether the 
desired accuracy has been achieved and whether or not the PIM-measurements can be 
terminated. The statistical theory has been applied to a railway carriage ol a high-speed 
train illustrating how the confidence levels of the loss factors and the SEA-predictions 
can be obtained and how the effectiveness of loss factor modifications can be evaluated 
in terms of confidence levels. 
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THE PRACTICAL IMPLEMENTATION OF SEA 
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1.   Introduction 

For the past three decades, structural dynamics prediction models have been almost 
exclusively based on the Finite Element Method (FEM) together with its Experimental 
Modal Analysis (EMA) counterpart Although this tool has proved highly successful for 
stress and low frequency vibration modelling, it has been found to have severe limitations 
for noise. This is because the accuracy of many finite element structural models becomes 
unacceptably poor by about the 10th to 20th mode, particularly if there are bolted or spot- 
welded joints. The important acoustic frequency range, however, often extends beyond the 
100th mode. It is for this reason that there has recently been a renewed interest in the 
Statistical Energy Analysis (SEA) technique for high frequency vibration and noise 
prediction. The successful application of SEA in its standard form relies on high modal 
density, high modal overlap and short wavelengths, ie the very factors which render FEM 
inaccurate. This is because SEA works with the average response of a structure and it 
needs these factors to ensure that the average is a realistic and thus a useful quantity. SEA 
and FEM are therefore complimentary rather than competitive techniques - FEM for low 
frequency and SEA for high frequency. 

In spite of the need to produce theoretical predictive models, experimentally based models 
are also extremely useful in practice. Apart from their use in predicting the effect of small 
modifications to a standard structure, they can also be used for sensitivity and diagnostic 
purposes. In the same way that EMA is the experimental counterpart of FEM, SEA also 
has an experimental counterpart, sometimes termed Energy How Analysis (EFA). It is 
the purpose of this paper to show how EFA can be used to diagnose and solve some of 
the noise and vibration problems that can occur with complex structures. 

2.   Theoretical   Concepts 

2.1   APPLICATION OF SEA THEORY TO COUPLED SUBSTRUCTURES 

The basic theory of SEA as formulated by Lyon[l] showed that the net steady-state 
frequency band averaged power flowing between two coupled oscillators is proportional to 
the difference in their vibrational energy levels, ie 

Pij = ß(Ej-Ej) (1) 
where, 
Pjj = net power flowing from oscillator i to oscillator j 
Ei,Ej        = energy of oscillators 
ß = constant of proportionality = to ITJ 12 = wm 21 
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co i ,(D 2     = uncoupled natural frequencies of oscillators 
T|ij = coupling loss factor from oscillator i to oscillator j 

It should be noted that E and ß are also time and frequency band averaged. 

Cremer and Heckl have shown [2] that for stiffness (spring) coupling ß can be expressed 
as: 

B. 2(8i + 8j)k2ij  (2) 
m,mj {(co2i - co2j)2 + 4 (8j + 5J)(8JCO

2
J + 8jto2j)} 

where, 
mj,mj      = oscillator masses 
8i,8j        = oscillator bandwidths 
ky - stiffness of coupling spring 

Application of equation (1), together with the definition of the internal loss factor (see 
below) enables the power balance equations to be written for each oscillator viz: 

Pl = toiTiiEi+coiTli2(Ei-E2) (3) 
P2 = C02H2E2 + C02TI21 (ß2 - El) 

where, 
Pi = external input power to oscillator i 
0>iT|jEi     = power dissipated in oscillator i due to damping 
rj j = internal loss factor of oscillator i 

These power balance equations for two coupled oscillators can be applied to the case of 
two weakly coupled structures (subsystems) provided certain assumptions are made. For 
example, it is assumed that, within the frequency band of interest, each mode absorbs the 
same amount of power, stores the same amount of energy and has the same internal loss 
factor. Thus, if the first subsystem has N\ modes within the band, the input power to 

Pi Ei 
each mode will be — and the energy stored by each mode will be rr- (Pi and Ei are band 

totals). Similar assumptions are made with regard to the second subsystem. 

Examination of equation (2) shows that, because of the term (co2i - co2j)2 in the 
denominator, ß will be negligibly small unless toi ~ coj. Hence, each mode of the first 
subsystem will only couple significantly with the mode of the second subsystem that is 
nearest to it in frequency. The average value of ß for these Nj couplings gives the 
average value of the coupling loss factor, T| 12. A similar argument can be made regarding 
the coupling of each of the N2 modes of the second subsystem with those of the first, 
giving an average coupling loss factor in that direction of T|2]. 

Thus, the coupling between any pair of modes can be assumed to be equivalent to two 
coupled oscillators, so that equation (3) is applicable ie 

Pi Ei /Ei       E2 11,12 (NJ ' U) 
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Pi = to TU El + mm 2 fa - ^ E2^ (4a) 

P2 E2 /E2      Ei\ 
-=(0T12-+«>T,2I^-    Wij 

P2 = wT12 E2 + (0T121 fa - j^ Ei J (4b) 

Note that in the absence of any information regarding the natural frequencies of the modes, 
the band centre frequency has been assumed for both. 

Summing equations (4a) and (4b) gives: 

Pi + P2 = (0 OiiEi + TI2E2) + (0 ll2(Ei-^E2)+r,2i(E2.^Ei| 

Now, (Pi + P2) is the total input power to the system and ©CmEi + T12E2) the total 
losses of the system and, under steady-state conditions, these must be equal. Hence, 

TH2^i-^E2J+T,21^E2-^Eij=0 

or ^n (NJE, . NIE2) + n21 (N^ . N2El) = 0 

Thus, for (N2E1-N1E2) #0 

NiTii2 = N2Ti21 (5) 

This is the well known reciprocity relationship, which shows that the total coupling 
strength (number of modes times the coupling strength of each mode) is the same in both 
directions - as it is with the two coupled oscillators, since a>i n.<D2. If (N2E1 - N1E2) 
= 0, the condition of equipartition of modal energy exists and it can be seen from 
equations (4) that this would prevent any power flowing between the subsystems, 
regardless of the value of the coupling loss factors. 

Equations (4) can be used for any practical structure provided that the modal densities of 
each subsystem are known. Since this is rarely the case, it is usual to eliminate the ratio 
Ni 
— between equations (4) and (5) to give: 

Pi = ©TiiEi + © OI12E1 - T121E2) (6a) 

P2 = WT12E2 + co (T)2lE2 - T| 12E1) (6b) 

This analysis can be extended to any number, N, coupled subsystems to give: 
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-EN- 

(7a) 

(7b) 

It should be noted that the r|ii element in a leading diagonal term of [L] represents the 
internal loss factor, T|j. 

2.2   COUPLING LOSS FACTORS 

It is important at this stage to understand the physical significance of the coupling loss 
factor, T|ij. As originally defined in relation to the coupled oscillators, it represents the 
coupling strength between their two modes. Extending this definition to the case of many 
coupled substructures, T|ij could in principle represent the average modal coupling between 
any two subsystems, whether they are physically connected or not. In practice, the 
necessary condition for weak coupling (to prevent equipartition of energy) generally 
reduces the coupling strength between unconnected subsystems to negligible proportions. 
It is therefore usual to consider these indirect coupling loss factors as equal to zero - 
indeed, it is usually more accurate to do this, particularly for an experimentally based 
model, as will be shown later. 

There are, however, some notable exceptions to this rule. Figure 1 shows a structure 
comprised of 3 flat plates (each considered as a subsystem) joined at right angles. The in- 
plane modes of plate 2 will be at much higher frequencies than the flexural modes of 
plates 1 and 3. Therefore the low frequency flexural modes of plate 1 will couple with 
those of plate 3 via (non-resonant) in-plane motion of plate 2. 

In this case plate 2 is merely acting as 
a connector. Another well known 
example of this "tunnelling" 
phenomenon, as it is known, is where 
two acoustic cavities are separated by 
a panel. Acoustic modes of each 
cavity can couple together via non- 
resonant (mass law) motion of the 
panel. In general tunnelling occurs 
when two similar subsystems are 
connected via a third dissimilar 

Figure 1 subsystem. 

It is therefore very important when setting-up an SEA model to include tunnelling 
connections; however, it is also important not to include these connections where 
tunnelling does not exist. 



N. LALOR 

2.2.1   Measurement of r\ij 

Most of the problems associated with the measurement of the coupling loss factors on 
practical structures, such as car body shells, have now been solved and these techniques 
have been reported in detail elsewhere (eg [3], [4], [5]). Nevertheless, in view of the 
comments made earlier concerning the advisability of setting all coupling loss factors 
between unconnected subsystems to zero, it is worth reviewing the Eaa method [4]. 

By use of the power injection technique [6], elimination of the internal loss factors and 
conversion of measured <v2> values to subsystem energies (via Meq), the coupling loss 
factors can be expressed uniquely in terms of the measured input powers and subsystem 
energies. Equation (8) gives this relationship for a 3 subsystem model. It should be 
noted here that Ey = energy of subsystem i when subsystem j is excited by a shaker. 

f7M^        0 0 0 0        fe.%) 

/F       P   \ ^32   E33/ \E32   E33//E„   c   • 

(IS  IS)      • 0 = 0     '(?■  «■ IEÜ U 

rii2~ -P2/E22~ 

^21 p1*11 

^13 P3/E33 

131 p1«11 

^23 P3/E33 

L.T132- _P2/E22J 

(8) 

Equation (8) is valid for the case where each subsystem is physically connected to the 
other two. If, however, subsystem 2 is disconnected from subsystem 3, in the absence of 
tunnelling, TJ23 and T|32 will be equal to zero. Equation (8) can therefore be partitioned in 
the following manner. 

CO [■EoaEoß] [Hol - rP(Xl 
LEßoEßßJ L 0 J " |_PßJ 

(9) 

where [T|a] represents the matrix of non-zero coupling loss factors. It can be seen from 
the first equation of (9) that 

P1121 

= h [Eaa!"1 [Pd [Hod = 
H21 
m3 
mi- 

ca 
(10) 

The importance of this method is that, if subsystem 2 is not connected to subsystem 3, 
the energy matrix in equation (8) is badly conditioned - note the E23 and E32 terms, 
which will be very small and subject to noise contamination, on the denominators of the 
Eßa part of the matrix. In addition, although Eßß is essentially well conditioned, the 
large leading diagonal terms will be suspect, again due to the presence of the E23 and E32 
terms on the denominators. Etta does not suffer from these problems and hence equation 
(10) will give much more accurate values of the non-zero coupling loss factors. In fact 
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Eaa is so well conditioned that it can be approximated to a diagonal matrix, which 
uncouples the equations. The coupling loss factors can then be expressed simply as [4]: 

It has been found from experience that, provided weak coupling conditions are satisfied, 
equation (11) gives acceptable results even if subsystem 2 is connected to subsystem 3. 
Indeed, it can be used for much larger models but, again, weak coupling conditions should 
prevail. 

Before leaving the subject of coupling loss factors, a further new development should be 
mentioned. Recent research at ISVR has shown [7] that the coupling loss factors can be 
expressed directly in terms of the measured input powers and <v^> values. For example, 
for a 3 subsystem model: 

_.._ Tii(v2l V33-V23V31)     (12a) 
(v22 V33 - V23 V32 + V23 V3i - V21 V33 + V21 V32 - V22 V3l) 

 T)2(vi2V33-vi3v32)  
1   (vil V33 - vi3 V3i + vi3 V32 - vi2 V33 + vi2 V31 - v]i V32) 

<Vj2> 
where vjj =~f~ 

The 3 subsystem model is particularly important here, as it is in relation to equation (8), 
because the third subsystem can be considered to be "the rest of the structure", ie the 
influence of the rest of the structure is taken into account when evaluating the coupling 
loss factors between two subsystems within it. The result shown in equations (12) above 
has now been generalised for any number of subsystems [8]. It should also be noted that 
dividing equations (12) by the appropriate loss factor gives the Smith criterion [9] 
uniquely in terms of measured velocities and input powers. 

Since equations (12) rely on a knowledge of the internal coupling factor, some 
consideration should be given here to its evaluation. Although the loss factors of 
individual modes within a frequency band may differ significantly, it is usually found that 
the band average values follow a smooth trend with frequency. Thus, it is now the usual 
practice at ISVR to measure the octave band decay (TOO) values and interpolate the curve 
to obtain the V3 octave values. This is done because it is not uncommon for individual 
V3 octave bands to contain no modes, although this is quite rare for octave bands. 

2.3   EQUIVALENT MASS 

Although the frequency band total of the kinetic energy (KE) and the strain energy (SE) of 
a mode is constant, their relative amplitudes depend upon the frequency of vibration. 
Below its natural frequency SE will be the larger of the two and the position is reversed 
above this frequency. When the vibration is exactly at the natural frequency, then the two 
are equal. Thus, the band averages of KE and SE can be considered approximately equal, 
provided that the natural frequency is near the centre of the band. This is why the natural 
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frequency of the "average mode" of each subsystem is considered to be equal to the band 
centre frequency, and is the reason for the assumption made earlier for the oscillators that 
coi ~ 002. Because KE and SE vary harmonically with time, it is convenient to express 
them in terms of their amplitudes, or maximum values. Thus, the time and frequency 
band averaged total energy can be expressed as: 

(KE)max = (SE)max = »tal energy 

This is a particularly useful relationship because it is much easier to measure KE than it 
is to measure SE. Unfortunately, even the measurement of KE presents significant 
problems, except with very simple structures. For one of the uniform flat plates shown 
in Figure 1, the maximum KE is given by 

(KE)max = El0t=M<v2> (13) 
where, 
M = mass of plate 
<v^>        = mean square velocity averaged over the surface of plate. 

However, equation (13) is not valid for a more complex structure such as the door of a car, 
regardles of how many sampling points are used to obtain the value of <v2>. 

It was research carried out at ISVR as part of the UK government's Quiet Heavy Vehicle 
project (QHV90) that first showed the way out of this difficulty [10]. Very carefully 
conducted experiments on diesel engine components, which were bolted to blocking 
masses, revealed a discrepancy between the directly measured input power from the shaker 
and that back-calculated from the relation, 

P = coM <v2>ni 

In this case the damping loss factor was obtained from vibration decay (Tßo) 
measurements, and the value of <v^> from a large number of accelerometer 
measurements. At the lime it was decided to introduce a correction factor K, which was 
found to be frequency dependent. This was later developed into the Equivalent Mass (Meq) 
concept [11]. 

There are three basic reasons why Meq differs from the actual mass: 

1. The number of velocity samples used to compute <v^> is not sufficient. 
2. The simple energy formulation of equation (13) is only applicable to uniform 

structures. 
3. The frequency band totals of KE and SE are not equal. 

For a simple uniform flat plate 10 samples are usually sufficient to provide a stable 
average, provided that some are not made redundant by placing them either side of an axis 
of symmetry. In the case of a more complex structure it is quite difficult to separate the 
first two aspects mentioned above, although the combined effect can be quite considerable. 
Figure 2 shows the results of two KE computations made on a finite element mdel of a 4 
cylinder diesel engine block [12]. In the first instance, the total KE was computed from 
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1/2 X^ M X, where X is the velocity vector and M is the mass matrix. The KE was then 
computed using equation (13), where M is the block mass and <v2> was calculated from 
all the nodes forming the sides of the block ie the sites that could be sampled for an 
experimental test although, in practice, far fewer would normally be chosen. The figure 
shows how the ratio M <v2>/V2 XT M X varies with frequency. 

A 

% 
V 
2 

X 4 

^2 

a 0000 
vo    O    in    oj 
T—    CM    H    co 

OOO 
§     8      vC 

§00000 
cQ 8   o 8  S 

*-*      r-     1-1      CN     <S     Cf> 

Frequency (Hz) 

Figure 2    Ratio of Apparent KE to Actual KE for Engine Block 

At low frequency (below the first mode of the block) the ratio is unity because the block 
vibrates as a rigid body. However, it can be seen that the ratio increases to a maximum of 
nearly 6 at around 1600 Hz. This represents an error of about 7.5 dB. 

Although the third source of error has previously been discussed in Reference [13] it is 
worth repeating the main argument here. For a simple mass (m) and spring (k) system 

vibrating with amplitude x0 at frequency (o, the total energy (Etot = E tot) 's given by: 

2„, Etot = - (m w  cos  (wt) + k sinz(cot)} x0
z = ( SE ) + (KE ) 

where the bars represent time averaged quantities and 

1 1 
(SE) = |kx0

2 : (KE) = ^mw2x0
2 

Hence 
Etot_R = ( SE ) + ( KE ) _ k + m (o2 

"IKE"   "      ("KT)      "   mm2 m (O' 

or Etot = R EKE = 2Rm<v2> 

Meq = r R m 
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When co< <C0n, R and therefore Meq approach infinity. At resonance, R = 2 and therefore 

Meq = m. At very high frequency Meq approaches y. 

However, when considering band totals rather than values at a partiuclar frequency, Meq 
can be very significantly different. For example, Figure 3 shows the variation of 
Meq/Actual mass with frequency for the previously mentioned engine block, computed 
from the finite element model and confirmed by experiment [12]. It can be seen that the 
ratio rises to a maximum of at least 30. This represents an error of over 15 dB. 
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Figure 3    Ratio of Equivalent Mass to Actual Mass for Engine Block 

2.3.1   Measurement of MCq 

Recent research at ISVR has shown [8] that the method used to calculate Meq from 
measured results is, in fact, not quite correct. Previously, the method developed in 
Reference [11] has been used, ie for subsystem i: 

(Meq)i = 
Pi Pj(T60)i 

13.82 <vj2>     (OTii <vj2> 

However, certain discrepancies in predicted results have indicated that this relationship for 
2 coupled subsystems should be: 

(vii - vii) 
(VW1 = (OTlj(viiVjj-Vij Vjj) 

where vjj has the same meaning as with equation (12). 

(14) 

For more than 2 subsystems the relevant expression becomes increasingly complex, 
although a generalised solution has now been obtained [8]. 
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3.   Practical Applications of Experimental SEA Model 

Once the internal loss factors, the coupling loss factors and the equivalent masses have 
been obtained, it is possible to directly relate input powers to subsystem velocities (or 
sound pressures, in the case of acoustic subsystems). This has a number of very 
important practical uses, which are outlined below. 

3.1   INPUT POWER DETERMINATION 

If the surface average of the squared vibration velocity is measured on each subsystem, 
when the system is operating normally, the operational subsystem energies can be 
obtained by multiplying by the appropriate equivalent masses. The input powers are thus 
derived from the power balance equations (7) ie from the product co[L][E]. 

Figure 4 shows the input powers calculated for a saloon car, using this technique [14]. 
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Figure 4   Input Powers to Car at 100 km/hr 

3.2   SOURCE CONTRIBUTIONS 

Having determined the input powers, the subsystem energies (and hence their radiated 
noise) can be obtained from a recast version of the power balance equations ie 

[E] = ^[L]-1[P] 
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By setting all the elements of [P] to zero, except the one under investigation, the noise 
due to it alone can be calculated. This process is then repeated for all the other elements 
of [P] in turn. Figure 5 shows the results of such an analysis carried out to determine the 
source contributions to the interior noise of the same car. 
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Figure 5    Source Contributions to Interior Noise 

3.3 POWER FLOW DIAGRAMS 

The derived input powers can also be used in combination with the SEA model to 
determine vibrational power flow round the structure. This is made possible because the 
power balance equations can be rearranged to give; 

Net power flow from i to j = co (Ej T|jj - Ej T|ji) 

Such diagrams are of considerable value to the noise control engineer, for they clearly 
show how each component that radiates noise gets its energy. 

3.4 SENSITIVITY AND OPTIMISATION 

It is possible to determine the sensitivity to each SEA parameter by perturbing it from its 
normal value and calculating the effect on the subsystem energies through the power 
balance equations. However, it is much more efficient to directly differentiate the power 
balance equations [15]. These sensitivities can then be used as the first stage of an 
automatic optimisation process, and a computer program has been written at ISVR to do 
this. Experience has shown that around 5 dB reduction can be achieved by simply moving 
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existing damping material around, and significantly more if coupling loss factors are also 
allowed to change - a result that would be almost impossible to achieve by trial and error. 
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Abstract 

This paper describes the application of Statistical Energy Analysis to the development of a 
light truck sound package. The development concerns addressed included airborne engine 
noise, tailpipe exhaust noise and rear road noise. SEA provided a framework to investigate 
different sound package configurations quickly and easily. SEA helped prioritize design 
alternatives to maximize benefit/cost ratio and to shorten development time. The project 
resulted in significant contributions to the development and optimization of the sound 
package and added value to the vehicle. 

The first section describes the development and baseline validation of the SEA model. The 
model was checked and updated based on data gathered by "Engine Noise Simulator" 
(ENS) testing, and similar testing for tailpipe and underbody noise. Both microphone and 
acoustic intensity data were collected and compared to model performance. Once the 
model was baselined, it was used to develop sound package alternatives. For airborne 
engine noise, a model and physical Designed Experiment (DEX) was carried out to verify 
that the model accurately spanned the design space. The model results and hardware DEX 
gave similar trends. Design recommendations were made to the vehicle program and 
proved out in hardware. The model was also used to drive sound package design changes 
for airborne noise in the rear. 

1. Introduction 

Shorter design cycle times are requiring manufacturers to rely increasingly on computer 
aided engineering (CAE) to verify performance of new designs. Interior noise has become 
an important performance attribute in modern passenger vehicles, as quiet and comfortable 
interiors are routinely expected by the customer. Accurate high frequency CAE models are 
required in order to design vehicles to meet targets for interior noise. 

While no existing single technology offers sufficient accuracy to cover vehicle noise 
prediction over the full frequency range of human hearing, current CAE practice appears to 
divide the noise, vibration, and harshness (NVH) spectrum into two ranges: low and high 
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frequency. Low frequency models use a deterministic approach, usually based on finite 
element or boundary element representations of acoustic spaces. High frequency models 
use a statistical approach, usually based on some form of SEA. The statistical approach 
works with energy and power, predicting mean-square acoustic responses averaged over 
spatial volumes and frequency bands. The dividing line between the low and high 
frequency ranges is quite blurred - vehicle excitation and response appear to be mainly 
deterministic below 80 Hz, and mainly statistical above 250 Hz, with both aspects apparent 
in the intermediate or middle frequency range. For development of vehicle sound package, 
SEA is the most appropriate system modeling tool since the sound package performance is 
targeted at the higher frequency range, and in fact has limited effect at lower frequencies. 

The SEA technique is rooted in the work of the early 1960s when working groups 
attempted to address serious structural acoustics problems in defense and aerospace 
applications. The concept of power flow in structures was developed. Considerable success 
was recognized in aerospace structures during this time period. In the late 1960's, 
increasing publication activities were seen on the development of a theoretical basis for 
working methods [1]. The applications spread into shipboard and building acoustics fields. 
In the 1970's, routine uses of SEA were seen in navy surface and submarine applications. 

The first full motor vehicle SEA model presented in the literature was developed by DeJong 
in 1985 [2]. Interest in applying this technology to vehicle development has steadily 
increased since then. DeJong's was a relatively coarse model containing 36 subsystems for 
a 1/2 car model. The analysis range was from 63 Hz to 2 kHz for road, powertrain and 
wind noise sources. Analytical SEA models of passenger vehicles have been reported by 
Steel [3], Cimerman [4], Dong [5], Moeller [6], and Lee [7]. Because of concern over the 
complexity in automotive systems, a test based procedure for building SEA-like coupling 
matrices has also evolved. These procedures have been reported by Shaw [8], Lalor [9], 
Walsh [10], and Bharj [11 j. Chen [12] compared a test based model to an analytical model 
for a light truck. Bharj [13] combined a test based and analytical model into a hybrid 
coupling loss factor matrix. 

The analytical SEA modeling technique was applied in the program described here. The 
approach selected was to develop a single general purpose SEA model of a light truck. The 
SEA truck model has been applied in the simulation of airborne noise transmission 
phenomena. Presented here are three cases to evaluate the body design in terms of 
powertrain and road noise: 

1. Airborne Engine Noise - The engine noise simulation was to investigate the noise 
insulation performance of the front end of the body system. The engine noise source was 
replaced by a simulator which was a cluster of loud speakers distributed on the envelope of 
the engine and transmission blocks. 



3 X. Huang 

2. Airborne Tailpipe/Exhaust Noise - For the evaluation of noise performance due to the 
exhaust tailpipe noise source, a tailpipe noise simulator was used in the vehicle design 
stage. The tailpipe simulator was basically an electric horn to excite acoustically at the 
exhaust location. 

3. Airborne Tue Noise - To evaluate tire noise, the airborne sound radiated from the 
interaction of tire and road was required. The reverberant sound pressure in the wheelwell 
measured in chassis dynamometer testing was imposed as the model excitation. In this 
study, only the rear wheels were used. 

2. Model Development and Validation 

2.1 GENERAL APPROACH TO MODELING 

The modeling philosophy adopted in this investigation was to build one general purpose 
SEA model to describe the light truck interior acoustic response to a variety of external 
loads. In SEA modeling, it is imperative to capture the detail necessary to describe the 
dynamics of the critical, or dominant, path. The model will be less sensitive to any 
modeling details on non-dominant paths. Realistic sound package optimization for 
simulation of "key life" events requires having multiple sources active over fairly wide 
frequency ranges. The sources can include road noise, both structureborne through the tire 
and airborne radiated from the tire; airborne and structureborne powertrain noise; wind 
noise; aspiration noise; component noises; and tailpipe/exhaust noise. There are a multitude 
of paths active from each of these sources with strengths varying widely with frequency. 
Any sound package optimization for one source acting independently would be less than 
optimum for the vehicle as a whole. Also, different events will have very different 
excitations, or load cases. Some "key life" events of interest include rough road at 35 mph, 
smooth road at 85 mph, steady acceleration, as well as impact and transient events. 

The sound quality of the result must be considered as well as the overall level. To meet 
these challenges, a very detailed SEA model was developed that has sufficient detail to 
capture a variety of sources and their associated paths. An analytical model was chosen so 
that the predictions could be applied early in the program before representative hardware 
was available. Acoustic refinement in hardware requires nearly production level vehicles to 
produce meaningful results. The SEA model allowed estimates to be made earlier in the 
program. One advantage of an analytical coupling matrix is the ability to compute design 
sensitivities, either directly from the matrix or by differencing results of two different model 
runs. There is no direct way to tie sensitivities to design variables in the test based 
technique. 

Two different techniques for sound package modeling have evolved as well. The technique 
adopted here is to explicitly model the sound package as elements in an SEA model. This 



4 X. Huang 

technique is described in Powell [14]. It is an asymptotic technique that captures the high 
frequency behavior of the lay up of materials. Another technique is described by Cimerman 
[4] and involves using apriori information about the lay up behavior in terms of 
transmission loss and insertion loss. The apriori information can come from test or external 
analysis. The advantage of the former method is that parameter sensitivity is directly 
available from the code and does not need to be externally generated. 

The SEA approach adopted here is a general purpose analytical model with self contained 
full parameter design sensitivity. This allowed the model to be used for multiple sources 
with extensive sensitivity calculation and optimization. 

2.2 STRUCTURAL MODELING 

For the vehicle structure, the sheet metal components were modeled with elementary 
structural members for which wave propagation theories have been developed. The 
systems used in this model were beams, plates, and cylindrical shells. However, the wave 
modes on the structure were the principal entities. The bending and inplane waves on the 
structural members were treated separately. The inplane waves combine both the 
longitudinal and shear waves since the wave properties are similar and the two are strongly 
coupled to each other. 

Plate subsystems were used to model most of the sheet metal panels. In the high frequency 
range, where wave lengths are much shorter than the radii of curvature, the effects of 
curvature can often be ignored. This simplification generated acceptable results. Many of 
the structural members were modeled as beams or shells with thin circular cross section, 
that included both one-dimensional and two-dimensional deformations. Inplane subsystems 
were included for all of the structure, in parallel with the flexural subsystems. 

A junction is a connection between structural/acoustical subsystems defined by a common 
motion. In this model only the local geometry at the junction was used to define the 
interaction between component modes. The major junctions were the interfaces among the 
plates, shells and acoustic spaces. 

2.3 SOUND PACKAGE MODELING 

The trim and sound package design play two roles in isolating the car passenger interior 
from unwanted noise. Its design is to insulate the interior from airborne noise by increasing 
the transmission loss of the structure. Transmission loss is the ratio of sound power incident 
on the body structure to the sound power transmitted to the interior, expressed in decibels. 
The second role is to reduce the level of structureborne noise radiated to the interior at high 
frequency. This reduction is also expressed in decibels as the insertion loss. The trim and 
sound package design decouples the steel panels from the interior at higher frequencies. 
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The sound package design can also affect the absorption of sound in the interior. It is 
important to characterize all of these effects in the SEA model. 

In the special case of trim added on top of a structural member or carpet over a panel, the 
increased transmission loss and insertion loss were modeled using five subsystems and two 
junctions. The subsystems were: outside air, plate bending, trim enclosed air, trim 
mass/bending layer, and inside air. The trim enclosed air represents the acoustic space 
between the structural member and the trim. If the trim air space is fiber filled, as under a 
carpet layer, the damping should be high to represent the sound attenuation in a porous 
material. 

The coupling through sound package decoupler was specified by two junctions. The 
outside air was connected to the trim air with the plate bending as a barrier. Then the trim 
was connected to the inside air with the trim layer as the barrier. For holes in the trim, an 
additional area junction was used to connect the trim air to the inside air. The mass of the 
air column in the opening was explicitly modeled to capture the Heimholte effect. 

2.4 BASELINE VALIDATION OF THE MODEL 

The baseline validation of the light truck SEA model with Engine Noise Simulator (ENS) 
test results was important for several reasons: verification of the configuration assumptions 
adopted in building the model, guidance for improvement in the model building process, 
and for the product's NVH improvement. The ENS equipment was simply a set of speakers 
mounted on an engine-shaped wooden box, as described in Griffiths [15]. There were low 
and high frequency loudspeakers installed on six faces of the box. The loudspeakers on 
each face were excited while loudspeakers on the other faces were inactive. The most 
important feature for the ENS facility was its good repeatability of test results (within 1 dB) 
with a white noise excitation. During the test, the vehicle's power train and drive-line were 
removed. The test was conducted in a semi-anechoic room. 

The ENS airborne noise test for the light truck SEA model validation included 77 
microphone and 11 acceleration measurements that were grouped into 4 clusters: source 
(engine compartment), environment (exterior), structure radiation (vibration) and target 
(interior) as shown in Figure 1. Twelve microphones were placed in the engine 
compartment to characterize the noise source. The exterior sound pressures were surveyed 
at locations underneath the floor panels, over the hood, windshield and roof, and beside the 
outer panels and glass. Eleven vibration measurements were concentrated on the frontal 
areas such as dashboard, floor panel, roof, windshield glass, door panel and side glass. 
Twenty microphones were located in the interior at driver's and passenger's ears, knees and 
toe board areas, inside the hinge-pillar and behind the instrument panel to survey the major 
noise transmission path characteristics from the engine compartment to the passenger cabin. 
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The SEA model validation process involved checking, verifying and modifying the model 
to capture the dynamics of the hardware, as shown in the test data. The first step was to use 
the SEA model predicted "thermal graph" described by Moeller [6,16], which represents the 
modal energy response, to check the model connectivity. The criterion was that the modal 
energy should diffuse smoothly from the source to the far-field sink. The phenomena were 
easily visualized through a finite element display model. The second step was to correlate 
the model response predictions to the test data. The discrepancy information between the 
predicted and measured responses, combined with model predicted power flow information, 
was used to locate and correct model building errors, as well as to verify and validate the 
model assumptions and strategies. The correlation process follows the noise transmission 
paths from source to the target. In this case the target was driver's and passenger's ear 
locations. The model predictions and test measurements are shown in Figure 2. The results 
show good agreement to the ENS test measurements, suggesting that the model captured 
the major dynamics of the hardware. 

The light truck SEA model, validated by the ENS tests for engine presence, was then 
applied to evaluate and develop the sound package in the cargo area for the tailpipe noise 
excitation. Since the SEA model was refined to include more details in the vehicle cargo 
area, additional validation was conducted for the rear part. The Tailpipe Noise Simulator 
(TNS) was used to excite the vehicle in the same facility used for the ENS test. The noise 
source for the SEA model was described by a series of sound pressure measurements 
around the TNS and the measured sound pressures were imposed as the excitation to drive 
the model. Transfer function comparisons around the second seat passenger's head position 
are shown in Figure 3. It can be seen that the transfer functions at this position have some 
discrepancy over 2,500 Hz, which was assumed to be caused by the directionality of the 
acoustic power radiated from the tailpipe simulator. 

2.5 INTENSITY VALIDATION OF THE MODEL 

A sound intensity test for the vehicle in the semi-anechoic room was conducted to further 
verify the SEA model predictions. The above model validations for engine and tailpipe 
noise sources were carried out to correlate the predicted model responses with the 
measurements in terms of sound pressure levels (SPL). The point SPL and/or spatially- 
averaged SPLs in a subsystem are a scalar index which contains all contributions from 
adjacent subsystems and no information on power flow directionality. It requires a large 
amount of measurements along the noise path to capture the major dynamics of the system. 
Sound intensity scanning over the surfaces of subsystems captures both the magnitude and 
the directionality of energy flow. The sound intensity predictions on subsystem surfaces in 
SEA models were compared to the measured sound intensities over the hardware surfaces to 
further validate the SEA model. 

Instruments used in the test included a B&K 2144 Real Time Intensity Analyzer with B&K 
4181 and 4183 Sound Intensity Probes. The sound intensity scanning was performed under 
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the Tailpipe Noise Simulator excitation. The scanning areas included the surfaces of the 
cargo floor panel, quarter panel trim, quarter panel glass, and the liftgate panels inside the 
rear cabin. 

Figures 4 and 5 show the power flow comparison over the cargo floor panel carpet and 
headliner surfaces. The gray areas in the figures denote the power flows into the vehicle 
interior from the surface over which the sound intensity was scanned and the white areas 
indicate the power flows into the surface. The SEA model power flow predictions show a 
good similarity to the power flows recorded on the hardware surfaces. Especially in the 
cargo floor carpet case, not only does it show the similar pattern but also accurately predicts 
the transition frequency at which power flows change direction. In addition, the 
information on the power flow patterns over the sound package surface provided a 
framework for thinking about development of sound package designs. 

3. Exercising SEA for Design 

The light truck SEA model was intensively validated under different loads and by different 
criteria. The results show that the model was robust in terms of predicting the trends and 
patterns of the hardware dynamics. The validation process itself provided good insight on 
where and how the sound package should be developed. The SEA model was then used to 
explore the design space, to improve the acoustic performance of the vehicle, and to 
evaluate and assess the sound package design alternatives. 

The model was first used to address engine presence NVH issues and to guide the 
evaluation and development of sound package designs for airborne noise. Eight sound 
package changes were proposed for evaluation. The dash doubler was a composite of two 
sheet metal layers with mastic in between. The engine side dash insulator was a sheet of 
fiber glass material placed in the central part of the dash on the engine compartment side. 
The hood absorber was a sheet of fiber glass attached beneath the hood. Hush panels were 
plastic panels with a layer of foam attached to close out the bottom of the instrument panel 
openings. 

The design variables were converted to the appropriate SEA model parameters and 
implemented in the SEA model to conduct a DEX to predict effectiveness of the proposed 
sound package. The hardware was tested on the light truck for the same DEX. Comparing 
the effects plots in Figures 6 and 7 show that the light truck model captured the major 
dynamics of the hardware and was capable of identifying the response change patterns and 
trends when the hardware was modified. 

The model was also used to develop sound package in the rear part of the vehicle to reduce 
the noise due to the tailpipe and road noise excitations. The target was to reduce the sound 
pressure levels at the second row passenger's ear locations. To achieve this goal optimally, 



8 X. Huang 

the model was used to identify the major sound transmission paths from the noise source 
subsystem to the target subsystem where the second row passenger's heads are located. 
This process was performed beginning at the target. First, power flows into the target from 
its adjacent subsystems were checked. Then the subsystem which had the maximum 
contribution was selected. That subsystem's maximum contributor was followed and so 
forth until the source subsystem was reached. The sequentially selected subsystems 
constitute the major noise transmission path. The maximum contributors to 2nd row 
passenger's ear subsystem were the cargo upper acoustic space below 1,000 Hz, and the 
rear door window above 1,000 Hz. Then we traced the major contributor to the cargo 
upper subsystem, which showed that below 1,000 Hz the major contributor is the cargo 
lower subsystem. The major contributor to the cargo lower subsystem was identified as the 
lift-jack compartment, Figure 8, which is directly connected to the rear wheel well, i.e., the 
noise source. Based on these analyses, a decoupler consisting of a barrier with foam was 
recommended to cover the rear wheel well to block and absorb the sound transmission from 
the rear wheel well. Figure 9 shows that noise reduction difference between the baseline 
and the baseline plus rear decoupler averaged about 1.3 dB across the frequency spectrum. 

4. Conclusions 

A multipurpose SEA model of a light truck was built to evaluate its airborne noise 
insulation performance. 
1. The model was validated against three different criteria: steady state field response, 

acoustic intensity/power flow comparisons and software/hardware DEX. 
2. The validated model was used to guide development of the vehicle sound package 

resulting in shortened vehicle development time. 
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Figure 1. Sensor locations for engine noise simulator test. 
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2. SEA model prediction and ENS test measurement, driver head space. 
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Figure 3.   SEA model prediction and tailpipe simulator test measurement, 
second seat passenger head. 
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Figure 4. Tailpipe noise simulator, sound intensity, cargo area floor. 
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Figure 6. Engine noise simulator designed experiment, dash doubler effect at driver head. 

Figure 7. Engine noise simulator designed experiment, cowl side insulator effect at driver 
head. 
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Figure 8. Power flowing into passenger side cargo lower acoustic space 
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Figure 9. Second row passenger's ear noise reduction prediction comparison between the 
baseline SEA model and baseline plus sound package under rear wheel well 
excitation. 



PREDICTING NOISE TRANSMISSION IN A TRUCK CABIN 
USING THE STATISTICAL ENERGY ANALYSIS APPROACH 

Dr. GERARD BORELLO 
InterAC 
10, impasse Borde-Basse ZA La Violette 31240 L'Union France 

A Statistical Energy Analysis (S.E.A.) based model of a truck cabin has been developed 
in collaboration with the Research Center of RVI (Renault Vehicules Industriels) in 
Lyon, France. The aim of the associated study was the determination of virtual (as for 
numerical but realistic) potential solutions for improving the sound quality within the 
driver's cabin. It was why this model was initially planned to predict the internal noise 
due to an external acoustic loading and due to mechanical forces applied to the chassis 
expected to be the main sources for this type of vehicle. An hybrid approach, mixing 
experimental SEA and analytical SEA modeling, was chosen from the beginning to 
reach the virtual noise reduction objectives. 

1.   Testing the actual cabin 

Prior to investigate noise control solutions, the robustness of the model needed to be 
proven. 
A five days test campaign on a truck vehicle was undertaken for creating the S.E.A. 
experimental database. 
The main following tests were performed on the RVI vehicle: 
• Identification of coupling and damping loss factors by the power injection method 

using a 18 subsystem experimental SEA model. This task implies measuring the 
power injected in the different subsystems with a calibrated excitation as well as 
measuring the corresponding energy transfers by recording all cross transfer 
inertances between coupled subsystems. An impact hammer was used as the 
excitation process. 

• Measurement of sound pressure levels (SPL), acceleration in some locations and 
power injected under steady state excitation using a shaker attached to the chassis. 

• Measurement of reverberation time in the cabin. 
• Simulation of an external acoustic loading using a loudspeaker located underneath 

the cabin and collect of subsystem accelerations and SPL's. 
• Internal excitation of the cabin using a loudspeaker and collect of some 

accelerations and SPL's. 



The experimental S.E.A analysis has allowed the identification of experimental damping 
loss factors (DLF) and coupling loss factors (CLF) of the different panels constitutive of 
the cabin. The other test results were used to compare with corresponding simulations 
using the analytical SEA model of the cabin developed with the AutoSEA software. 

2.   The SEA experimental model 

Only direct coupling loss factors corresponding to direct links between subsystem (as 
sketched in Figure 1) were computed using the AutoSEA-X [3] software developed by 
InterAC company. 
In this software the DLPs are calculated separately from the CLPs using the following 
matrix equations where Cij corresponds to the normalized transfer energy between 
subsystems i and j and Pi to the normalized power injected ("normalized' meaning 
dividing each quantity by the excitation force autospectrum). These equations are 
assuming no damping losses within joints. 
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Figure I. Connectivity of the 18 subsystem experimental SEA model 

Rather large standard deviation were found in space frequency averaged velocity squared 
estimates used for the computation of normalized transfer energies (see Figure 2) due to 
some complexity on corresponding structures and the limited duration of the 
experimental SEA testing (limited number of transfer inertances for each subsystem). 

Figure 2. Standard deviation in dB in subsystem velocity squared estimates 



3.   The analytical SEA model 

The model was graphically constructed within AutoSEA [4] from RVI sketches and 
drawing as shown in Figure 3. This model was built using the standard AutoSEA of 
flexural plate and cylinder SEA elements. Then the measured DLF's were imported 
within the model through the neutral file format of AutoSEA. Some measured injected 
power where used to validate asymptotic SEA input mobilities calculations on 
subsystems where simple theory needed to be tuned. Simulating an external acoustic 
loading with the analytical model leads to the comparison given in Figure 4. We can see 
the prediction of the cabin SPL is pretty good in a frequency bandwidth that starts from 
around 100 Hz up to 5 to 6 kHz. This result has only been obtained after import of 
experimental DLPs within the analytical model. Prior to this import, using preliminary 
constant value of DLF vs frequency was leading to SPL discrepancy of about 6 to 10 dB 
between test and prediction in many frequency bands making the correlation with the test 
a nearly impossible task. After DLF import, the discrepancy was reduced to a few dB, 
allowing then for a better interpretation of differences between test and prediction and 
some improvement of the modeling was achieved by playing on the structural 
characteristics of some subsystems. 
When loading the chassis using a randomly excited shaker, the analytical model shows 
satisfactory trends in term of noise transmission in the frequency bands where the 
comparison is possible (when above the background noise of the test work room). Good 
correlation with acceleration measurements in some reference points was also observed, 
leading to the conclusion the model was also suitable for analyzing structural 
transmission coming from the engine attachment points(most of the CLFs were 
analytical in this case. 
Accurate prediction of the behavior of some particular subsystems was not achievable 
but these singularities were identified and recommendations given to RVI as using 
alternative SEA libraries or local finite element results but it was still possible to frame 
the trends. 



Figure 3. Network AutoSEA window representing the truck analytical SEA model excited by external 
acoustic sources 
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Figure 4 Predicting SPL inside cabin and comparing with corresponding measurement (the uppe.r graphs r g •     • s         3 distribution of SPL used as input to simulate the acousüc loading). correspond to the external measures < 



SPL prediction in cabin and test comparison with chassis shaker excitatioi 
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Figure 5. Predicting SPL inside cabin and comparing with corresponding measurement in exciting the 
chassis with a shaker. The cabin experimental SPL only emerges from the background noise between 300 

and 1000 Hz 

4.   The optimization of sound transmission in cabin 

The base of the optimization of sound pressure levels in the cabin is to minimize (in the 
analytical model) input powers from all connected sources radiating within the cabin 
after appropriate ranking. These contributions are shown in Figure 6. 
From this analysis, floor and side panels are mainly contributing on a frequency broad 
band scale but with different paths (resonant or non resonant depending of the frequency 
band). 
The model also shown that noise reduction solutions based on increase of internal 
damping were rather inefficient. Performance of solutions based on improved trim panels 
or mass adjunction were evaluated that showed improvement of around 10 dB mainly 
above 500 Hz. 



Figure 6. Distribution of power inputs within the cabin acoustic space vs subsystems and frequency 

5.   Conclusions 

A theoretical model of a truck cabin was developed for understanding the respective 
contributions of the different structural components to the internal sound pressure level. 
This model shows that using an analytical SEA model enhanced by the import of 
experimental damping loss factors, it is possible to predict the global vibroacoustic 
behavior of the cabin to various external loading : external acoustic sound field to 
simulate engine noise radiation and force punctual excitation to simulate input of 
structural vibration by the engine mounting blocks. This model is then used to find 
solutions for noise reduction and to quantify their performance. 
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STATISTICAL ENERGY ANALYSIS OF FLUID-FILLED PIPES 

S. FINNVEDEN* 
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Southampton, S0171BJ, England 

1. Introduction 

It is possible to make predictions of pipework vibrations at low frequencies using beam 
models. However, once the shell modes in the pipe walls are cut-on, the number of degrees 
of freedom required for classical methods increases dramatically. Today, the general trend 
to save costs and weight results in that higher quality steels are introduced to allow for a 
reduction of wall thickness. This reduces the cut-on frequencies for higher order radial- 
axial modes considerably and, as a consequence, 'high frequency' methods are needed 
also at 'lower' frequencies. 

In an ongoing project in Southampton the feasibility of using statistical energy analysis 
(SEA) for screening pipeworks to find potential risks for fatigue is investigated. In this 
project, first a direct dynamic FEM was developed for analysing vibrations of fluid-filled pipes 
[1]. The objective was to have an accurate tool for performing numerical experiments and for 
verifying approximate theory. Second, based upon the experience gained, a simplified theory for 
the radial-axial vibrations was developed and was used for deriving closed form expressions for 
wave numbers, modal density and input power from point sources [2, 3]. Third, a 3-d.o.f. SEA 
element was formulated. This element is useful when, because of damping, the energy density 
varies within an element [4]. Fourth, methods and software were developed for calculating SEA 
coupling loss factors. So far these routines have been applied to flange connections [5]. 

Here, the results in [2, 3, 5] are compiled and are used to formulate a SEA model for a 
small pipe structure. The results are compared to those from calculations using the spectral 
FEM [1] showing good agreement. It is believed, SEA has the potential to become a 
standard method for predicting noise and vibration in pipeworks at somewhat higher 
frequencies, thus complementing beam models. 

2.  Waves in fluid-filled pipes 

The waves in fluid-filled pipes were originally investigated by Fuller and Fahy using a 
semi-analytical method [6]. To increase efficiency, Finnveden [1] developed a FE method 
in which the radial dependence of the sound pressure was approximated with polynomial 
trial functions. 

The first step in an analysis of pipes is to decompose the motions cicumferential 
dependence in a Fourier series. In this series, the first, n = 0, term has no circumferential 
dependence; the n = 1 term has one wavelength around the circumferential; then = 2 term 
has two wavelengths; and so on. At lower non-dimensional frequencies, there are four 

* Also at the Dept. Vehicle Engineering, KTH, SE-100 44 Stockholm, Sweden 
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types of waves that can propagate in fluid-filled pipes: 1) Torsional, n = 0, waves in the 
pipe wall which are not coupled to the fluid motion; 2) Beam-type, n = 1, bending waves 
with the fluid mass added to that of the pipe; 3) Coupled axi-symmetric, n = 0, dilatational 
waves which are predominately as: a) Longitudinal waves in the pipe wall with some 
radial motion because of 'Poison coupling'; b) Plane acoustic waves forcing some radial 
motion of the pipe wall. 

At somewhat higher frequencies, higher order radial-axial (n = 2, 'ovaling', n = 3, 
'teddy bear',...) waves can propagate. The cut-on frequencies for these waves are [2] 

Jen 
t ("'-')' 

InR  \l + \/n2+n/n ' (1) 

cL = JFJp~;    E   = £/(l-v2);    fi = RPf/{2Tcp);    ß = T//12/?2 . 

E is Young's modulus, p is the pipe wall density, v is Poison's number, R is the cylinder 
radius, Tc is the pipe wall thickness and pf is the fluid density. 

Besides these waves, at even higher frequencies, there is the axi-symmetric flexural 
wave, cut-on at the ring-frequency, and non-planar predominantly acoustic waves as well 
as non-planar longitudinal and torsional waves. For commonly used engineering materials, 
the first of these waves that can propagate is the first higher order acoustic wave, the n = 1 
mode, which is cut-on approximately at a frequency 

/,. = l.Zcf/27iR. (2) 
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Figure 1. Wavenumbers in fluid-filled pipe. , n =■ 0, with increasing wavenumbers: longitudinal, torsional 

and fluid wave, plus flexural mode at 6 kHz; ' ', n = 1, beam bending mode plus acoustic and torsional 

modes at high frequencies; ' ', n = 2,3,... 8, radial-axial waves with increasing cut-on frequencies. 
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TABLE 1 Geometrical one material parameters 
Material Poisons ratio 

V 
Density 

P   [kgIm') 
Free wave speed 

■JE/ p, cf  (m/s) 
Loss factors 
1«. 1,; Vf 

Steel 
Water 

0.3 7800 
1000 

4961 
1500 

0.01, 0.01 
0.01 

Outer diameter (mm) Wall thickness (mm) 
Pipe 

Range 
273 
406 

4.19 
2*38 

In the present work a thin-walled water-filled steel pipe is considered, the data are found in 
Table 1. It has a ring frequency, fr =5.9 kHz and a cut-on frequency for the first higher 
order fluid mode, fca = 3.2 kHz. In Figure 1 wave numbers are shown for the propagating 
modes. In what follows, calculations are made for frequencies up to, and including, the 2 
kHz octave band. The excitation will be a point force in the radial direction and the 
torsional wave is not excited. Consequently, included in the analysis are the n = 0 
longitudinal and acoustic waves and the radial axial waves of order n = 1 until order n = 8. 

3.   Simplified equations of motion 

Simplified equations of motion for the n > 1 modes in fluid-filled pipes have been derived 
[2]. These derivations are based on the Lagrange formulation of the Arnold and Warburton 
equations for cylinder motion [7, equation (2.12a)] extended with terms modelling the 
fluid motion and the coupling between fluid and cylinder [1]. The same approach is here 
used to find equations for the n = 0 modes. These simplified equations are useful for 
deriving the SEA parameters. 

3.1  AXI-SYMMETRIC MOTION 

For n = 0 modes the tangential (torsional) motion is uncoupled from the radial-axial 
cylinder motion and from the fluid. For frequencies well below the ring frequency, the 
axial flexural stiffness of the cylinder is negligible. Thus, as a first step, terms describing 
the tangential motion and the axial flexural stiffness are neglected in the Lagrangian for 
the cylinder motion. Second, at lower frequencies the fluid motion is to a good 
approximation plane, that is, without radial dependence. So, the fluid sound pressure is 
assumed to be 

p{x,r) = y(x)/ pco, (3) 

where p is the sound pressure and x// is an analogy to the fluid velocity potential. This 
expression for the sound pressure is inserted into the Lagrangian, the corresponding Euler- 
Lagrange equations are derived and after some simplifications the equations of motion are 
found to be 

p2"+^u+       2vp£«      ££   =   0; ——r-  f  JC, U   -I-  ——; r =    U , /A„\ 

dx2        L E(l-a2-v2)dx (4a) 
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—*- + k2,y/ -—   =   0;  wü-fi2) = ^-. w - vR 
dx2        ~'T       1-fl2 dx        "   "v"   "' ET    r "dx (4b.c) 

(5) 

where u is the axial displacement and w is the radial displacement and where 

n = a>R/cL;    y = 2p, c) R/(E' TC(l-ß
2)). 

These equations are similar to those derived by Pinnington and Briscoe [8]. 

Wavenumbers and modeshapes. Solutions of the form e,tjr are applied to equations (4) 
giving an eigenvalue problem for the wavenumbers. The four solutions, ±a  and ±ß, are 

a2   =  k) + M-kjkl,    ß2   =   k2
p - Jk;-k}k2

L ; 

k) =(l + q)(k2
f+k2

L)/2; (6) 

q - v2y/((l-n2-v2)(l + y)+(c)/c2)(l-ß2)). 

The corresponding eigenvectors are found when these values for a and ß are substituted 
into equations (4). It is seen that if the non dimensional number q is small, the wave 
numbers are close to kL and kf. Since the coupled solutions are pushed apart they are 

identifiable, so that if kf > kL then o corresponds to the wave that is predominantly of 

fluid character and ß corresponds to the predominantly structural wave. 

3.2 RADIAI^AXIAL WAVES 

For frequencies below the ring frequency, cylinder cross sectional breathing is greatly 
restrained. This is verified by inspection in [7, Table 2.11] where it is seen that the cross 
sectional mode shapes for propagating radial-axial modes are almost in-extensional. That 
is,  to  a  good  approximation,  the  circumferential  strain,   e^   and   the  tangential 

displacement, v, are 

£0 = (nv + w)/R = 0;    v = -win. 0) 

This is the fundamental assumption for the derivation of the simplified theory for radial- 
axial motion of fluid-filled pipes [2]. Additionally, the axial flexural stiffness of the pipe 
wall is neglected and analysis is restricted to lower frequencies for which the pipe motion 
is subsonic and the fluid compressibility and fluid axial inertia are negligible. Finally, a 
trial function for the fluid sound pressure is found by retaining only the first term in a 
series expansion of the exact solution [6]: 
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p(x,r,<j>) = \ff(x)r" cos(n<j>),   n = l, 2,... (8) 

Upon this basis, the expressions for the tangential displacement (7) and sound pressure (8) 
are inserted into the Lagrangian, the corresponding Euler-Lagrange equations are derived 
and after eliminating yr the equations of motion are found 

d2e     „. „(„   dw £/„ j-^ = G\ K„ i e+— | - Pco<in e ■ ,2l 

GA.K. 
d_ 
dx (•♦£H£l - (*.--■*.)- 

(9) 

where G is shear modulus and where 

9 = n2u/R . (10) 

Above, the cross sectional area Ac, equivalent area moment of inertia /„, equivalent shear 
factor Kn, equivalent mass per unit length Me, stiffness Kw  and factor C„  are 

Ac = 2nTcR;    K„ = l/(2n2);   /„ = Iy/n*;   ly = nTcR* ; 

Mt = pA/2(l + l/n2+2n/n);   Kv = ßE All (n2-\f IR2; (11) 

C„ = 2ß{n-l/nf/K„;    p = Pf7cR2/p27cRTc. 

In equation (9), the term proportional to C„ describes the restraint against twist of the 
pipe wall. For thin-walled pipes, low order n and, or, low frequencies, this term may be 
neglected. Equations (9) are then equal to those for a Timoshenko beam on a Winkler 
foundation having stiffness per unit length, Kw . This "foundation stiffness" describes the 
circumferential flexural stiffness of the pipe-wall. 

Wavenumbers. Using the equivalent Timoshenko beam theory (9), the propagating wave 
number for the mode with circumferential non-dimensional wavenumber n is given by the 
non-parenthesised signs in 

M = <->[# (!>[ff2+M(ö-a?)]*] . 

H = (M+a\-QCn /(l + C„))/2;     ft, = (üR/^Elp = = ß/Vl-v2       (12) 

M = {(o2Mc-Kj)R2 / (GAK„{1 + Cn));   Q = n2G / E. 

In [2] numerical experiments are made in which results from equation (12) are compared to 
those found using accurate thin-walled cylinder theory and Helmholtz equation for the fluid. 
Criteria for the application of the simplified beam theory are given. 
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4. SEA formulation 

Traditionally, using the wave approach to SEA, different wave components are assumed 
incoherent and of equal magnitude. For cylinders with contained fluid, SEA models are 
made regarding the cylinder and fluid as separate sub systems [9, 10]. The modal densities 
are calculated assuming the mode count a continuous function of both the axial and 
circumferential wave numbers, e.g., originally by Heckl [11] or most recently by Langley 
[12]. The normalised mode count for cylinders is defined N„ = Tt IL Nc, where Nc is the 

mode count. It is a function of only ß and the non-dimensional frequency fi [3]. In 
Figure 2 are shown the normalised mode counts found using Arnold and Warburton 
cylinder theory and the ones found from references [11,12]. These results are independent 
of ß and are, as stated by the authors, not correct for frequencies where only the beam 
mode can propagate. Also, these theories do not account for the increase in the mode 
count at the cut-on frequencies. 

10' 10"' 
Non Dimensional Frequency 

Figure 2. Normalised mode count in cylinders (From [2]). ',[11]; ' ',[12]; 

Warburton theory; a, TC = RI20; b, Tc = R/60; c, TC = RIIS0. 

■', Arnold and 

4.1  THE WAVE GUIDE APPROACH TO SEA 

Many structures, e.g., cylinders, are geometrically orthotropic, resulting in that the speed 
of energy propagation is dependent on the direction. As can be deduced from Figure 2, the 
modal density, the derivative of the mode count, is also dependent on the direction of 
propagation. Additionally, for many connections the energy transmission between sub 
structures depends strongly on the angle of incidence. Examples of such connections are: 
coupling between cylinder and contained fluid [9], plate/beam junctions [13] and flange 
connected pipes [5]. This strong dependence on angle of incidence makes the SEA diffuse 
field assumption dubious. 

To overcome this, Langley proposed the 'wave intensity method' [14]. Using this 
method the SEA assumptions are relaxed. The wave components are still assumed in- 
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coherent but their amplitudes are calculated explicitly. The total wave energies are then 
found by integrating over all possible directions of propagation. 

Here, the alternative the 'wave guide approach to SEA' is proposed. Using this 
approach, first the waves that can transmit in the wave guide are calculated from the 
dispersion relations. Then, each of these wave types is considered as a one-dimensional 
SEA element. The advantages of this approach are that: 1) It is focused on the waves, or 
standing waves (modes), that carries energy; 2) It does not rely on a sometimes false 
assumption of in-coherence but on the ortogonality of modes; 3) Much of what has been 
learnt over the years on the application of SEA to one-dimensional systems applies. Of 
course, the wave guide approach is in principle equal to the standard wave approach [15]. 

4.2 SEA PARAMETERS 

To formulate SEA models for the energy balance in a pipe structure the input power to 
each element is needed as are the modal overlaps, describing the damping within the 
elements, and the coupling factors, describing the energy flow between them. Additionally, 
the modal densities are required for calculating the total vibration energies from the 
calculated modal energies. 

4.2.1 Modal density 
In one-axial, prismatic, wave guide systems the resonances occur approximately when 

kL = Nn , (13) 

where k is a wavenumber in the direction of the wave guide, L is the length and N is any 
positive integer. The non-dimensional Heimholte number, k L, is a measure of the size of 
the wave guide. For thin-walled cylinders, equation (13) is exact if the boundary 

conditions are "simply supported", that is, if they are du/dx = v = w = d2w/dx2 = 0. Also 
for a fluid-filled cylinder, equation (13) is exact, if the cylinder is simply supported and if 
the fluid obeys pressure release conditions, p = 0, at the pipe ends. 

The mode count, Nc = iVt.(cu), is the number of modes having resonance below the 
frequency CO. If the mode count is considered as a continues variable of the Helmholtz 
number, it is, for each wave type in the wave guide, given by equation (13). It must, 
however, also be accounted for that for n^l there are two waves with equal wave 
numbers but with different polarisation's. 

In SEA, the modal density is central. It is defined for a frequency band between 
frequencies co, and cou: 

ArfK)-Al(q>f) 
n*» = ^T~Z  • (14) (»„-co 

Often the limit (ou -» co, is taken, thus resulting in an expression valid for a particular 
frequency. However, this limiting expression is singular at cut-on if the mode count is 
based on (13). Here, calculations are made in third octave bands and equation (14) is used 
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to calculated the modal density, where the mode counts are given by equation (13) (and for 
n > 1 multiplied by 2) and the wavenumbers are given by equation (6) or (12). 

4.2.2 Modal overlap 
The dissipated power in an element is by definition, 

Pd = TjcoE = MEm;   M = r\<ondm;   Em = E/nJm, (15) 

where 7] is the loss factor and E is the total vibration energy in the element, näem is the 
modal density, Em is the modal energy and M is the modal overlap. In SEA, equations for 
energy conservation are formulated with the modal energy as independent variable. Then, 
the modal overlap based on the 3 dB bandwidth is the parameter describing the dissipation 
of energy. 

4.2.3 Coupling factor 
In SEA, the energy flow between two directly coupled elements is 

Ptj = C(Emi-Emj), (16> 

where the coupling factor, or 'modal energy conductivity', is defined by this equation. 
Using the wave approach, the conductivity is calculated assuming that only element i is 
directly excited and that element,/ has a large modal overlap. For this case, C is related to 
T„,, the transmission factor for two semi infinite elements [16 ] 

C = T_/TT(2-T„). (17) 

In [5] transmission factors for flange-coupled fluid-filled pipes are calculated and the 
routines presented are here used to calculate the conductivity, C. It should be noted, for 
geometrical reasons, waves of different trigonometric orders, n, are not coupled. 

4.2.4 Input power 
The investigated structure is excited by a radial point force with time-rms amplitude f{). 
For the radial-axial modes, the elegant expression in [17, Section v.4.c] is used to 
calculated the frequency band averaged input power [3] 

it (modal force)2        , , , 
Pm   = — modal density   = 

2     total mass 

 nil   /„» *>J-*>/)> 
(18) 

pAc(l + l/n2+2n/n+(knR/n2)2\      «. " ai 

where jx and Ac are defined in equation (11). The wavenumbers are given by equation (12), 
using the convention that the wave number is zero below the cut-off frequency. This expression 
for the input power is investigated in [3] where criteria for its application are found. 
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The input power in the axi-symmetric modes is calculated from the equations of motion (4) 
applied to an infinite pipe that is excited by a radial point force at x = 0. The solutions are 

< \ -\KV^iax+B+U2e
ß\    x>0       . . _ JA+e

iax+B+e
ißx,    x>0 

U[X) " \A.US t""+B.U4 c"". x<0'  V[X) " [A. ^iax+B_ c""*. x<0     <19> 

where A+,A_, B+ and B_ are constants. The eigenvectors have been scaled so that their 
y/ -component is unity while their «-components are £/, respectively. From the equations 

of motion it is deduced that y and du/dx are continuous at x = 0 whereas 

e^oH+e) -«(-«)] =YÄ"'   e->0 
d y/{+e) _ d y(-g) 

dx dx 
2coRf{) 

E A,. 
(20) 

These four continuity conditions are used to find the constants A+,A_, B+ and B_ and the 
radial displacement is calculated using equation (4c). The input power is 

Pin = Re(-ia»w/0). (21) 

The results using the simplified formulations are in Figure 3 compared to those found with 
the spectral FEM in [1] snowing good agreements. 

10 10 10 
Frequency  (Hz) 

Figure 3. Input power to infinite fluid-filled pipe. Upper, axi-symmetric modes: lower, radial-axial mode; 
' ', SFEM, narrow band and third octave band averages; ' O', SEA 
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5. Numerical example 

A simple un-supported pipe structure with three sections in a row, joined with flanges, is 
considered. The pipe and flange dimensions are defined according to standards [18, 19]. 
The material data are found in Table 1 and the three section lengths are respectively 9.5m, 
5.21m and 7.57m. The excitation is a radial point force 3.49m from the end of section 1. 
Dissipative losses are described using a complex Young's modulus and complex densities, 

£ = £<,(l-«»?.).P = P.(l + «^)andp/ = pJb(l + iij/). 

The third octave band average of the energies and energy flows in the structure are 
calculated with SEA. The SEA model is, for each trigonometric order, formulated with the 
SEA parameters presented above. The results are compared to those found with the 
spectral FEM (SFEM) presented in [1], Calculations are made for frequencies from the 
31.5 Hz octave band until the 2 kHz octave band. The deterministic calculation is made 
with 1500 logarithmic spaced frequency points, ensuring approximately 2.5 points within 
resonances 3 dB bandwidth. It should be pointed out, to use standard FE calculations for 
benchmark testing the SEA model would require extensive calculations. Using the rule of 
thumb of six nodes per wave length results in a FE model with almost 100.000 d.o.f. for 
the cylinders and perhaps as many for the fluid. 

In Figure 3 are shown the calculated energy flow in the second flange connection and 
in Figure 4 are the total energies in the first and third pipe sections. At lower frequencies, 
the modal density and the modal overlap are small and the results are not in good 
agreement. However, once the n = 2 mode is cut-on, at 90 Hz, the frequency averaged 
results agrees very well. At higher frequencies, above 1 kHz, there is a tendency for the 
SEA model to over predict energy transmission. Probably, since SEA does not account for 
that, because of damping, the energy density can decay within an element. Finally, in 
Figure 5 are shown the energy level difference between the end sections. It is not effected 
by errors in the SEA prediction of input power. Hence, the agreements are better at lower 
frequencies while the high frequency deviations are equal to those in Figure 4. 

Frequency (Hz) 

Figure 3. Energy flow in second connection;' ', SFEM, narrow band and third octave band averages; ' * ', SEA 
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Figure 4. Third octave band averaged total vibration energies.' 
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6 Conclusions 

Statistical energy analysis is applied to predict the vibrational energies in a small fluid- 
filled pipe structure consisting of three sections joined with flanges. The SEA model is 
based on a wave guide approach. Using this approach, first the waves that can propagate in 
the wave guide are calculated from the dispersion relations. Then, each of the wave types 
is considered as a one-dimensional SEA element. The advantages of this approach are 
that: 1) It is focused on the waves, or standing waves (modes), that carries energy; 2) It 
does not rely on a sometimes false assumption of in-coherence but on the ortogonality of 
modes; 3) Much of what has been learnt over the years on the application of SEA to one- 
dimensional systems applies. 

The propagating waves for the n £ 1 modes are described with a previously reported 
equivalent beam theory [2, 3] whereas those for the n = 0 modes are described with a 
similar theory presented here. The coupling factors are found with a FE-technique [5]. 

The SEA predictions are compared to those from a spectral FE calculation [1] showing 
good agreements. However, at lower frequencies, when only the n = 0, longitudinal and 
fluid modes and the n = 1 beam mode can propagate, the results are not so good. This 
confirms that beams are not suitable for SEA, unless they are very long. At higher 
frequencies, above 1 kHz, standard SEA over predicts energy transfer because, when the 
modal overlap is high, the SEA assumption of constant energy density within the elements 
is violated. This error can be corrected with a 3-d.o.f. SEA element formulation [4]. 

In summary, the feasibility of using SEA to predict vibrations in pipeworks has been 
demonstrated. It is believed that the method has the potential to become a standard method 
for predictions at frequencies where the shell modes in the pipe wall are cut-on, thus 
complementing beam models. However, the major contribution of this work is considered 
to be the introduction of the wave guide approach to SEA. This approach, combined with 
the FE-technique discussed in [1, 5, 20] may become a very powerful tool for generating 
data to SEA models. 
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1. Introduction 

Nowadays aspiration for a better quality of life includes a growing demand for 
lower noise air conditioners. There consequently seems to be a need for tools 
that would help manufacturers to understand both the generation of noise in a 
device and its propagation to the surrounding medium. In the present paper, we 
propose a modelling tool for making a global diagnosis of the propagation of 
mechanical and acoustical waves inside and from an existing air conditioner. 
We also use that tool to try to foresee the efficiency of a noise reduction 
solution. 
Air conditioners are complex systems to be modelled : their radiation spectrum 
is rather broadband, their geometry is intricate, they are composed of a number 
of heterogeneous elements and include structure and air-borne propagation 
paths. A thorough modelling, e.g. based on the finite element method, seems 
therefore to be out of reach. 
Although all the hypothesis for application of SEA are not quite fulfilled in the 
case of an air conditioner, we decided to simplify its modelling by considering 
that theory as a starting point of the approach. Our added value consisted then 
in trying to make the SEA model as accurate as possible by paying special 
attention both to the measurement of the data and the phase consisting in the 
updating of the model. A specific method for data fitting and model parameter 
estimation was actually used during the updating phase. 
We now present our methodology and the results obtained by applying it to 
foresee the efficiency of a noise reduction solution applied to a real life air 
conditioner. 
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2. Elaboration of the initial vibroacoustic model 

The first step of our methodology is devoted to the elaboration of the initial 
SEA vibroacoustic model. This step is based on a thorough observation of the 
unit and includes several tasks. 
The first task is the choice of the subsystems. For each subsystem, one has to 
collect the relevant data. In the case of cavities, those data are the density of 
the fluid, the speed of sound in the fluid and the dimensions of the cavity. In 
the case of structures, the relevant data are the mass of the structure and its 
dimensions. 
Another task consists in characterising the connections between all the 
subsystems. There exist three kinds of such connections : structure-structure, 
cavity-cavity and cavity-structure. 
Special attention must furthermore be payed to classifying each subsystem into 
one of the two following categories : the category of subsystems that directly 
radiate sound into the room and the category of those that do not. 
The device under study is the external unit of an individual split air conditioner 
(see figure 1). It includes two sound sources : an axial fan and a compressor. In 
figure 1, one of the panels which compose the envelop of the device has been 
taken out to display the compressor in its cavity. 
The observation of the unit leads us to consider eleven subsystems : nine 
structures and two cavities (see figure 2). The nine structures are the top, the 
heat exchanger, the partition which separates the compressor cavity from the 
fan cavity, the fan support, the side panel, the front panel, the rear angle panel, 
the front panel and the base. The two cavities are the one which contains the 
compressor and the one which contains the fan. The latter cavity is composed 
of two sub-cavities : one can be seen on the heat exchanger side and one on the 
front panel side. 
The full list of SEA modelling parameters includes : the vibroacoustic power 
injected into each subsystem by external forces, the damping loss factor of 
each subsystem and the coupling loss factors associated to any pair of 
subsystems. Note that the list of coupling loss factors includes the 
unidirectionnal coupling loss factors from the radiating subsystems to the 
surrounding medium. We use version 1.2 of standard SEA software AutoSEA* 
to provide us with the required coupling loss factors [1]. We furthermore 
collect in literature the required values for representing damping loss factors 
[2]. The analysis is performed by third-octave band in the frequency range 
[200 Hz-2500 Hz]. 
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Figure 1 : photography of the air conditioner unit under study. 
One of the panels has been taken out to display the compressor in its cavity. 

Figure 2: exploded view of the unit and definition of the eleven subsystems 
which compose the SEAvibroacoustic model of the unit. 
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3. Data collection 

Two operating conditions of the device are considered. The compressor is 
switched off in the first one. Both the fan and the compressor are switched on 
and in the second one. For each operating conditions, the total energy of the 
eleven subsystems and the sound power level radiated by the device are 
measured. The energy of each subsystem is determined by frequency averaging 
in third octave band the measured digital spectra, and spatially averaging over 
the subsystem domain the frequency averaged spectra. The formulas for 
deriving the energies are detailed hereafter both for the structure and the cavity 
subsystems. 

Let M denote the number of measurement points taken on a subsystem. 

In the case of structures, the energy E^ of subsystem «i» for operating 

condition « r » and third-octave band « k »is derived by using : 

E^TTXIVJM (1) 

Where mi is the mass of subsystem «i» and v* is the third-octave band 

average of the velocity spectrum measured at point «j ». The measured data 
being non stationnary and all the spectra being not simultaneously measured, 
velocities (as well as pressures in the case of the cavities) are referenced to the 
magnitude of the signal delivered by a fixed accelerometer. 

In the case of cavity subsystems, E* is given by : 

Ef = ^-l(p*)2 (2) 1      pc2Mj=i^ 1J/ 

Where Vi, p and c respectively denote the cavity volume, the fluid density 

and the speed of sound in the fluid, p* denotes the third-octave band average 

of the acoustic pressure measured at point«j ». 

Sound power levels are determined by integrating the sound intensity vector 
measured at the nodes of a parallelepipedical mesh enclosing the device. 
Figure 3 displays the sound power level in third-octave band for the two 
operating conditions. 
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4. A specific method for data fitting and SEA model parameter estimation 

4.1. SUMMARY OF MAIN SEA EQUATIONS 

According to SEA theory, the state of the unit can be described by : 

j=l 
(3) 

Where superscript k indicates the pulsation band, <D& is the central pulsation of 

the band, N denotes the number of subsystems, E}k is the energy of the j-th 

part for the r-th operating condition andp[k denotes power injected by external 
forces into the i-th part for the r-th operating condition. 

effl(A) 
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Figure 3 : sound power level in third octave band 
for the two operating conditions in the frequency range [200 Hz-2500 Hz] 

The meaning of ?ijk is detailed in equations (4) and (5). Since equation (3) is 

considered for N subsystems, B pulsation bands and R operating conditions, it 
provides a set of NxBxR equations. Letiy* denote the structural damping loss 

factor of the i-th subsystem and a* an additionnal loss factor that accounts for 
the loss in energy by radiation of the i-th subsystem into the surrounding 
medium. Let furthermore Tijk denote the coupling loss factor from the i-th part 

to the j-th part. T^ is computed by using the following equations : 
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Case i=j, rtf = TT + a* + I i\f (4) 
j=l 

Casein j, f^s-np (5) 

Among the R conditions considered in equation (3), one can define N special 
operating conditions after switching the device (fan and compressor) off : 
during the p-th of those conditions, the operator injects and measures a power 

denoted by 8fP,k into the i-th subsystem. By definition of Kronecker's symbol 

OP, the p-th subsystem is the only one to be excited during the p-th special 

condition. The definition of those N special further conditions is of particular 
interest. It allows one to calibrate the response of the device by measuring the 
energies of all the subsystems that are generated by the input of a known power 
into a single one of them [3], [4]. Equation (3) is completed by equation (6) 
that allows one to calculate the sound power level 5>k radiated into the 
surrounding medium during the r-th operating condition : 

e>SXaW = 2* (6) 
j=i 

4.2. MODEL PARAMETERS AND DATA 

Let us now consider the application of general inverse problem theory to try to 
improve our SEA model. That theory draws up a distinction between the 
parameters of the considered model and the data the model is provided with. 
The former are not measurable so that one can only obtain them by using some 
identification mean. The latter are on the contrary directly measurable. In the 
frame of inverse problem theory, equations (3) and (6) are therefore to be seen 
as relations between some model parameters (which areT|jk, ock and p[k in the 

frame of SEA), and some data (which are EJk, fpj^andpjMn the frame of 

SEA). Note that thePj-k belong either to the family of parameters or to the one 
of data, depending on wether they are the unknown powers injected into the 
device by the fan and the compressor, or the ones applied (e.g. with a shaker) 
and measured by the operator during the calibration phase. 
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4.3. THE BAYESIAN APPROACH IN INVERSE PROBLEM THEORY 

Among the available inverse methods, the bayesian approach appears to be 
well suited to update SEA models because it is, like SEA, based on a statistical 
approach. Let us now present that approach from a general point of view [5]. 
Let X be a vectorial space and x a vector of that space whose components are 
the model parameters and the data of the problem. One can arrange equations 
(3) and (6) in the form « f(x)=0 », where 0 denotes the null vector, and f is a 
function that maps X into a space of residuals. Let 0(x) be a law of probability 
density describing the a priori state of information on the physical correlations 
assumed in-between the components of vector x. Note that those correlations 
are simply equations (3) and (6) in the frame of SEA. Let p(x) be a law of 
probability density representing the a priori state of information on the 
components of vector x. From now on, is superscript « k » omitted to simplify 
equations. In the bayesian approach, states of information 0(x) and p(x) 
combine one with each other to provide a more informative state called a 
posteriori state of information, represented by law of probability density o(x): 

a(x) = p(x)0(x) (7) 

SEA being not an exact theory, we assume some kind of uncertainty on its 
fundamental equations (3) and (6), by assuming ©(x) is gaussian : 

NF 

ew=Äex<^,w,(cwr^     (8) 

Where NF is the dimension of the space of residuals, Cj,rioris an a priori 

covariance matrix on the physical correlations and det(c£rior) denotes the 

determinant of c£rior • Since all the data and the parameters considered in SEA 

are positive, one has to search for them as such. One of the way for doing that 
is to make a change in variables so that data and parameters are sought for as 
powers often. We therefore introduce vector x* and function <p defined as : 

xi = 10x* =* x* = log10 (xi) = x* = <p(xi) (9) 

*\ Where x, (resp. x*) denotes the general term of vector x (resp. x ). A gaussian 

law of probability density is assumed for vector x  : 
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p(x)= f**   I } exp(-l((p(x)-(p(xpnOr))t(c^or)"
1((p(x)-(p(xprior)))(10) 

Where NX is the dimension of space X, C** or is an a priori covariance matrix 

associated to x* and xprjor is an assumed a priori value of x. After replacing in 
equation (7)p(x) and 0(x)by their expressions (see eq. (8) and (10)), we get a 

new expression for o(x): 

<j(x) = constant. exp- 
((pW-qKxprior)/ (c^*or)   (<p(x) - qKxprior)) 

+ (ID 

Where « constant» denotes a positive real constant. Although o(x) is not 
gaussian, it appears to be a bell shaped law of probability density, so that the 
information contained in it can be summarised by a central estimator and an 
estimator of dispersion. The simplest central estimator is the vector of 
Maximum Likelihood denoted x  , such that 0(x) is maximum for x= x  . Note 

ML v   ' ML 

that vector x that maximises o(x) also minimises the argument S(x) of the 
exponential in (11). S(x) is defined as : 

S(x) = ((p(x)-(p(xprior))t (CJU)_1 («POO " <P(xprior))+f (x? (Cf
pri0r)

_1 f(x) (12) 

Since S(x) is non quadratic, x is found by applying an iterative minimisation 
procedure [5]. One will find the matricial expressions to be used for computing 

the a posteriori estimators of dispersion CX^and cL^ in [5]. 

5. Application of the bayesian inversion method to the case of the unit 

The bayesian inversion method described in section 4 has been programmed as 
a function inside LADY*, a general software devoted to signal processing and 
data management, developped in the frame of a partnership between EDF and 
INTESPACE. The model parameters elaborated in section 2, as well as the 
results of measurements described in section 3 were provided to that function 
in the form of twelve a priori vectors (one for each third octave band) 
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respectively associated to twelve covariance matrices. To simplify the 
problem, covariance matrices were assumed to be diagonal. 
Since the function S(x) to be minimised depends on a covariance matrix 

Cx*   that contains the variances both on parameters and data, the ranking of 
^-pnor 

the a priori uncertainties on parameters and data determines the result of the 
identification and should therefore be carefully established. The identification 
provides us with twelve a posteriori vectors and a posteriori covariance 
operators. The vectors components are data and parameters that satisfy 
equations (3) and (6) better than did the a priori vectors. Note that the lower the 
uncertainty associated to a data or to a parameter in the a priori covariance 
matrix, the closer its a posteriori value lies from the a priori one. In the limiting 
case where the user provides a null a priori uncertainty on some data or 
parameter (that means that the user is sure of the value of it), the identification 
outputs a solution that equals the a priori value of the data or parameter. As a 
piece of example, figure 4 displays the a priori and a posteriori spectra of the 
radiation loss factor a of the side panel (see figure 2). 

200  250  315  400 500  630  800  1000 

Frequency (Hz) 

12S0    1000     2000    2500 

Figure 4: radiation loss factor a priori and a posteriori spectra of the side panel 
by third octave band in the frequency band [200-2500 Hz] 

The a priori values of a are determined in the frame of classical SEA by using 
AutoSEA*. In the higher frequency range (from 800 to 2500 Hz) those values 
are representative of reality so that they are only slightly corrected by the 
updating method : the derived spectrum is smooth and the a posteriori values 
nearly equal the a priori ones. In the lower frequency range however, the a 
posteriori loss radiation factor output by the updating method exhibits large 
variations because of the strong modal behavior of the unit. The a posteriori 
values are moreover quite different from the a priori ones. 



A. ADOBES, L. RICOL, Y. ROUSSEL 

6. Application of noise reduction methods to the unit 

Several noise reduction solutions were applied to the air conditioner. The most 
effective of them was the one that consisted in covering the internal faces of 
the compressor cavity with a viscoelastic fibrous layer. After application of 
that solution, the unit was submitted to the operating condition where both the 
fan and the compressor are switched on. The energies of all the subsystems and 
the sound power level of the unit were measured again. Figure 5 allows one to 
appreciate the noise reduction by comparing the sound power level radiated by 
the unit, before and after the pasting of the viscoelastic fibrous layer. 

Kot f oundproofed 

D Soundproofed 

200   230  315   «0   500   630  800 1000 1250 1600 2000 2500 

Frequency (H^ 

Figure 5 : sound power level by third octave band in the band [200-2500 Hz] 
after covering the internal faces of the cavity with a viscoelastic fibrous layer 

It appears that noise reduction achieved depends on the frequency band. It is 
the higher (approximately 10 dB) in the 315 Hz third octave. Sound power 
level unexpectedly increases by 2 dB in the 1000 Hz third octave. After 
assessing experimentally the reduction in sound power level, we try in next 
section to estimate it by using the updated SEA model obtained in previous 
section. 

7. Modification of the values of the updated model parameters 

We now use the updated SEA model to try to foresee the reduction in sound 
power level. We first have to simulate the noise reduction solution itself by 
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correspondingly modifying the values of the model parameters. The SEA 
model is used afterwards to recompute a new sound power, which in turn is to 
be compared to the one measured in section 3. 
Since we lacked of experience in that domain, we performed the modification 
of the model parameters values rather arbitrarily. We could neither find any 
reference about the values of SEA parameters to be chosen in the case of our 
assembly made of a viscoelastic fibrous layer pasted to a plate, nor assess the 
modifications of the coupling loss factors of the panel induced by the pasting 
of the layer on it. 
The covering of the internal faces of the compressor cavity with the fibrous 
viscoelastic layer was eventually simulated by : 
- increasing the updated damping loss factor of the subsystems corresponding 
to the plates pasted with the layer to take into account the viscoelastic effect, 
- increasing the updated damping loss factor of the subsystem associated to the 
compressor cavity to take into account the damping effect due to the fibres, 
- leaving unchanged all the coupling loss factors, the radiation loss factors and 
the powers injected by external forces into the unit. 
The damping factors were increased in the same proportion in the whole 
frequency range. 
After modification of its parameters, the SEA model was run again in two 
steps. The energy of all the subsystems was first computed after injecting the 
parameters new values into equation (3). The sound power level was then 
computed by injecting the previously determined energies, as well as the 
radiation loss factors, into equation (6). Figure 6 displays the comparison 
between the measured sound power levels spectrum (black bars), and the 
predicted one (white bars). It also reminds the sound power level spectrum 
before application of the noise reduction solution (solid line). 
It appears that the difference between predicted and measured levels ranges 
from 0 to 4 dB, depending on the third-octave: prediction overestimates reality 
in the first three third octaves bands and underestimates it beyond the fourth 
band. Note that although the damping loss factors were increased in the same 
proportion in the whole frequency range, the proportion of the computed noise 
reduction does vary with frequency. The trends in noise reduction is globally 
well simulated by the model. The results would have probably been improved 
by using some model parameter variations more representative of the pasting 
of the layer on the panels. 

8. Conclusion 

We have presented a methodology devoted to foresee the efficiency of a noise 
reduction solution applied to a real life air conditioner. That methodology is 
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based on SEA and on a bayesian approach for data fitting and model parameter 
estimation. It appears that theoretical SEA parameters are, as expected, not 
suitable for the vibroacoustic modelling of air conditioners. One can however 
consider them as the a priori information to be input to a bayesian process of 
parameter identification. Provided the number of measurements taken into 
account by that process is large enough, one eventually gets more 
representative parameters. The vibroacoustic model elaborated by using that 
method allows one to foresee the trends in sound power level reduction. In the 
absence of any alternative method, that methodology appears to be able to 
provide an approximate vibroacoustic model of an air conditioner and can 
therefore be considered as an acceptable engineering design tool. 
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Figure 6 : sound power level after applying the noise reduction solution : 
predicted and measured effect of soundproofing, not soundproofed. 
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1. Introduction 

The development of statistical energy analysis (SEA) arose from a need by 
aeronautical and aerospace designers in the earlier time of 1960s to predict 
the dynamic response of flight vehicles and payloads to rocket jet noise and 
aerodynamic noise, which are broad-band excitations. So far there has been 
no effective method for prediction of the dynamic response except SEA. 
The aeronautical and aerospace structures, characterized by higher 
structural factor (i.e. the ratio of structural surface area to mass itself ), 
produce a vast number of condensed vibration modes under such 
excitations as jet noise, aerodynamic noise, impulsive thrust, aerodynamic 
loads in the transonic and reentry flight phases etc.. Although 
computational methods for predicting vibration modes of structures were 
available, the size of the models which could be handled (i.e. the number of 
degrees of freedom), and the speed of computation, were such as to allow 
designers to predict only a few of the lowest order modes of rather 
idealized models. This posed a serious difficulty because the frequency 
range of significant response encompassed the natural frequencies of a 
multitude of higher order modes, the structures could support a number of 
different wave types, the payload structures were indirectly excited via 
structural wave transmission, and the transmission paths were circuitous 
and involved many different forms of structure and contained fluids. 

Historically, most of the catastrophic accidents of satellite launch 



vehicles or other large-size flight vehicles were caused by an unsuccessful 
prediction of dynamic environments ( mainly imply shock, vibration and 
noise environments ). During the development of a late-model flight vehicle, 
if the determined dynamic loads and dynamic environments were over-low, 
under-test and under-design could occur, reliability of the developed flight 
vehicle could not be fully tested and some problems or imperfections in 
design, technology, material, elements, etc. could not be fully revealed, 
consequently the failure of flight must be caused under the real adverse 
dynamic environment when the flight vehicle with hidden troubles was 
launched. On the contrary, if the provided dynamic loads and dynamic 
environments were over-high, the developed flight vehicle could not passed 
the environmental tests which conditions are artificially formulated, re- 
design and re-correction must be performed, in the end, either the 
developing period of time for the flight vehicle was enlarged, the structural 
weight and cost increased, or the flight vehicle under development could 
not come true at all. This forces the designers to improve the precision to 
predict the dynamic environment using SEA. One of the most important 
approaches for the solution of the problem is to make coupling property 
close to real coupling case as far as possible. The assumption of weak 
coupling, conservative coupling in conventional SEA, which is one of the 
most main causes for poor predicting precision using SEA should be re- 
considered, i.e. great attention should be paid to the development of SEA 
of nonconservatively coupled system. [1] 

2. SEA of Nonconservatively Coupled Systems 

Traditional statistical energy analysis is based on such assumptions as 
conservatively coupled, weakly coupled systems, proportional power flow, 
reciprocal principle etc.. The rigorous assumptions have placed serious 
restrictions on the improvement of estimate accuracy of dynamic responses 
using SEA and the extension of the applications of SEA in engineering. 
There exists connecting damping in almost all the real structural systems. 
Moreover the connecting damping, e.g. in common screwing, riveting 
structures, is non-negligible compared with the structural damping itself. 
The connecting damping is one of the main sources in damping of the 
composite structural systems, which include the damping caused by gas 
pumping, friction between the connections etc.. The solution to the 
problem in SEA of nonconservatively coupled systems is founded on the 



basis of the power flow analysis of the coupled systems. 

2.1. POWER FLOW ANALYSIS OF NONCONSERVATIVELY 
COUPLED OSCILLATORS 

The power flow between nonconservatively coupled oscillators has been 
analytically studied by researchers. Inductively, two approaches were used 
in the analysis of the power flow. One is so-called equivalent approach (or 
approximate approach ), in which the nonconservatively coupling problem 
is equalized to a conservative problem by introducing the effect of coupling 
damping on the power flow.[2][3] The other is the exact solution approach 
in which the expressions of the power flow with coupling damping are 
directly derived from the dynamic equations of oscillating system on the 
basis of the theory of random vibration and mechanical impedance.[4][5][6] 
The latter is beneficial to revealing the effecting law of coupling damping 
on the power flow and extending the analytical results into the analysis of 
the power flow of a multi-mode system, however the process is tedious. 
Although the former is relatively simple due to the use of the concerned 
results from conservatively coupling system, the extension of the results 
into multi-mode systems is rather difficult due to the introduction of varied 
correction coefficients. 

It is found in the study on the power flow between nonconservatively 
coupled oscillators that the power flow is not proportional to the energy 
difference between oscillators while: [4] 

P^aiEt-EJ + ßEt+YEj 0) 
Where a, ß, y are the coefficients depending upon oscillators' parameters 
and coupling parameters. And the direction of power flow is not 
reversible, i.e. Pv *■ -Pfi. The description of power flow in the frequency 

domain is given in reference [5] 
p»=Hw) (2) 
/>, = Re{F21^} 

Where FiJ(i*j,i,j = 1,2) are Fourier transformations of the forces on 

oscillatory applied by the motion of oscillator /', V*', F2* are the conjugates 
of Fourier transformations of the oscillator's velocities. There exists an 
obvious imperfection in the description of the reaction between oscillators 
as it ignores the coupling action between oscillators. The power flow 
obtained from the results of conservatively coupled oscillators[6] could not 



be directly extended to multi-mode systems. 

2.2. NONCONSERVATIVELY COUPLING ANALYSIS 
OF MULTI-MODE SYSTEMS 

2.2.1. Equivalent Method 
Reference  [7]  gives the  generalized  energy balance  equation  of 

nonconservatively coupled system with correlative excitations: 

where [V1 is the loss factor matrix of nonconservatively coupled system 

under the correlative excitation. The equivalent input power matrix {P*} 

of nonconservatively coupled system can be written: 
{P-} = M-[CT]{S„}-[C/]{S;} (4) 

Where [CR] is the inphase power coefficient matrix, [Cl] is the 

orthogonal power coefficient matrix, {SR} inphase spectral density matrix, 

{Sj} is the orthogonal spectral density matrix. Eq. (3) states clearly that 
the power flow equation of the nonconservatively coupled system with 
correlative excitation is the same as that of the conservatively coupled 
system with non correlative excitation as long as the real input power {Pin} 
is replaced with the equivalent input power and the conventional 
conservative loss factor matrix is replaced with the nonconservative loss 
factor matrix. Eq. (3) also states the following points: (1) the equation is 
the power flow expression of conservatively coupled system with 
correlative excitation if the system is conservative; (2) the equation is the 
power flow expression of conservatively coupled system with real 
correlative excitation if the system is conservative and the imaginary parts 
of cross spectral density between excitations are all zero; (3) the equation is 
the power flow balance expression of non-conservatively coupled system 
with real correlative excitation if the imaginary parts of cross spectral 
density between excitations are all zero; (4) the equation is the power flow 
balance expression of non-conservatively coupled system if the excitations 
are independent each other. 

2.2.2. Unknown Parameter Reduction Method 
Considering a nonconservatively coupled  system consisting of two 



Subsystems with multi-modes, which can be either structural or acoustic. 
The following assumptions are used in the analysis: (1) each mode has 
similar energy in either subsystem; (2) the mode distributions follow an 
equal-probability law within the analyzed frequency bands; (3) the coupling 
properties of each pair of modes are similar in either subsystem. 

Let the modal densities of two subsystems be «,, n2, respectively. 
The coupling output powers of two subsystems are pu, p2X , respectively. 
The coupling loss factors of subsystems 1, 2 on mode-average are 
TJ[[\ tß}, rfä, rffi, respectively. The internal loss factors of subsystems 1, 
2 are 77,, r\2, respectively. The coupling output power flows of subsystems 
1, 2 are respectively: 

Where < > denotes that the parameters in brackets are on time-average. The 
internal loss factors of subsystems 1, 2 are respectively: 

C, 
(6) 

The energy balance equations of two subsystems are: 

CO 

~Vn     V2 + V» 
(7) 

It should be noted that the coupling output power flows between two 
subsystems are expressed \nPu, P2] in Eq. (5) instead of Pini Pin2 in order 
to be beneficial to the extension of the analytical results into multi- 
subsystems. Pn is the coupling output power flow of subsystem 1 which is 
caused by the coupling action between the two subsystems, while P21 is the 
coupling output power flow of subsystem 2 which is caused by the 
coupling action between the two subsystems. The value of Pu, P2] can be 
either positive or negative, for each subsystem," positive " denotes that the 
power flow is output from the subsystem itself, " negative " denotes that 
the power flow is input into the subsystem. Therefore the power loss in 



coupling element can be written as: 
Pn = P +P (8) rd r\2 ^ r2\ V   ' 

The parameter Pj2 describes the coupling property between two 

subsystems, the coupling is conservative if Pf = 0; the coupling is non- 

conservative if Pd
n * 0. 

The analytical results for two-subsystem can be conveniently extended 
into the analysis for multi-subsystem. Let the number of multi-subsystem be 
N(N>2). Considering two coupling subsystems ij(i*j), we can 
write the coupling output power flow of subsystem /' caused by coupling 
action as follows that: 

P^co^E.-rffE) (9) 
As a result, the coupling output power flow of subsystem / in multi- 
subsystem should be: 

^o = t^=«tW^-^) <10> 
.7=1 1=1 

The energy balance equation of subsystem ;' is: 
P +P -P 

The energy balance equations of N coupling subsystems are: 

a 

,(0 *7.+I>S 
j=2 

'In 

'l\N 

_„0) 
'/21 

N 

+2> ,(2) 
2j 

7=1 
j*2 

'I2N 

'IN\ 

'IN2 

N-\ 
(N) ^+Z< 

>=i 

A 

. = - 

rin.l 

rin,2 

lin,N 

(11) 

(12) 

Or: 
*[v]{E} = {P} 

It is clearly found from Eq. (12) that (1) for nonconservatively coupled 
system,   rff) * rff,   rff^rfp,   and  there   exist  reciprocal   relations 

between rjf and rff and between  rjf and rff, but no reciprocal 



relations between rff and T$ and between rff and iff-, (2) for 

conservatively coupled system, rff = rff, 77? = # > and there exists a 

reciprocal relation between iß0 and iff\ (3) the number of unknown 

parameters increases greatly in the energy balance equations of non- 
conservatively coupled system, the unknown number in the coefficient r\ 
matrix is IN2 -N, while the unknown number is N2 for conservatively 
coupled system. It can be found through the practical analysis of structural 
or acoustic systems that the number of unknown parameters can be 
reduced by the reduction of number of coupling relation i.e. by using varied 
methods in the division of subsystems. For nonconservatively coupled 
system, only the case of two coupling subsystems is solvable even if the 
internal damping of all the subsystems is known. Because coupling with 
two subsystems can produce four unknown parameters if internal loss 
factors are both known, missing one coupling relation can eliminate four 
unknown parameters. As a result, in order to make a nonconservative 
system solvable, the reduced coupling relation number Nrc should satisfy: 

N,,c>  (13) 
4 

For a nonconservatively coupled system with N subsystems, the fact that 
coupling number Nc between subsystems is less than maximum solvable 
coupling number NsmaiiC (Nc < N^maKC) is a necessary condition under 

which the on-line identification technique for coupling loss factor in 
traditional SEA is suitable for SEA of non-conservatively coupling system. 
The maximum coupling number Nmt^c, the minimum coupling number 
Nmiac and the solvable maximum coupling number NrJBMK<e can be 

respectively calculated according to the following formulas: 

3. Applications to Engineering 

To examine the effectiveness of SEA of nonconservatively coupled system 
and to provide theoretical preparation for the optimized control of 
vibroacoustic environment, the prediction of vibroacoustic environment 
for an instrument cabin (an enclosed cylindrical shell ) of a flight vehicle 



was performed as an applied example. The enclosed cylindrical shell with 
2.0 m high, 0.8 m in diameter and 0.0022 m in thickness is in reverberation 
sound field. The inside construction is shown in Fig. 1. The original data of 
the cylindrical shell for the predict of vibroacoustic environment are shown 
in Table 1. The vibroacoustic environmental predict for three serious 
models of SEA is performed. 
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Fig.l Sketch map of cylindrical shell with inside instrumental construction 

Table   1.Original   Data  for  Vibroacoustic 
Predict 

Environment 

Subsystem Parameter Name Symbol Value 

reverberation 
field 1 

volume v, 82.12 m1 

mass density Pa 1.2  kgrn\ 

sound speed ca 344 ms~] 

cylindrical 
shell 2 

surface area 4 4.757 m2 

area density P* 3.784 kgnf2 

longitudinal sound speed Cn 3597 ms~x 

thickness h 2.2 mm 
rotatory radius *. 0.635 mm 
diameter A 0.813 m 
elastic modulus n 2.23x10'° 

Nm-2 

volume density Pt m4kzm~*      1 



internal 
sound field 3 

volume v> 3.966 m3 

instrument 

panel 4 

surface area At 1.36 m1 

area density p« 1.86 kgnf2 

sending inertial moment 1, 9.0 mm3 

bending rotatory radius RA, 

longitudinal sound speed C/4 
R,CU 18.3 wV 

bulkhead 5 

length k 2.39 m 

line density Pi> 1.3 kgnf' 

vertical plane rotatory radius 
Rfii 11.0 WOT 

horizontal     plane     bending 
rotatory radius 

"/M 12.7 WOT 

twist rotatory radius R» 16.8 OTOT 

polar inertial moment J* 13.7 COT
4 

twist stiffness constant K, 1.12 COT
4 

longitudinal sound speed cu 5182 OTS"
1 

shear sound speed c 3048 WS"1 

supporter 6 

4 supporter's length k 1.02 in 

line density Pi 0.488 to"' 
vertical plane bending rotatory 
radius 

Rev* 12.7 OTOT 

horizontal     plane     bending 
rotatory radius 

RFHI 16.8 OTOT 

twist rotatory radius *. 21.1 OTOT 

polar inertial moment J* 8.03  cw4 

twist stiffness constant «i. 0.015 COT
4 

longitudinal sound speed Cu 5182 msl 

shear sound speed c* 3048 OT5"1 

static force stiffness Kt 1.38 Nm 

angle made with cylindrica 
shell axis 

I      0 20° 

3.1. JOINT ENERGY TRANSFER TEST ALONG BOTH SOUND 
AND MECHANICAL ROUTES AND SEA PREDICT 



Acoustic experiment of the cylindrical shell with instrument construction is 
performed when the shell is hanged through a spring in reverberation room 
( sound field 1 ). Cylindrical shell 2 is reinforced by four annular 
bulkheads fixed on the inner wall. There are four supporters 6 on the 
bottom annular bulkhead 5, on which rectangular box 4 with openings at 
both the top end and the bottom end is supported. Vibration energy is 
transferred into the instrumental panel of rectangular box 4 through inner 
sound field 3 and support beams 6 to develop the acceleration response 
level of rectangular box 4. Predict results for various SEA models are 
shown in Fig.2. The symbol's meanings in the Figures are: 

AL4re]g = 101og10^,   SPLlre20flPa = 101og10^,   pr = 20fjPa 

Where (aty is acceleration average square value of 4th subsystem, (rf) is 

pressure average square value of 1st subsystem, pr is reference pressure, g 
is gravity acceleration. 
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Fig. 2   Predict and test results for energy transfer 
through both sound and mechanical routes 

3.2. ENERGY TRANSFER TEST ALONG SOUND ROUTE 
AND SEA PREDICT 

Supporters 6 are removed and rectangular box 4 is hanged by soft spring 



instead onto the top end of the cylindrical shell. The cylindrical shell is still 
hanged in reverberation room and excited by reverberation sound field 1. 
Energy is transferred only along the route: sound field 1 -» cylindrical shell 
2 -> inner sound field 3 -»instrumental panel of rectangular box 4, and to 
develop the dynamic response of box 4. The predict and test results are 
shown in Fig. 3 where fci is critical frequency of subsystem /', fr2 is ring 

frequency of subsystem 2. 
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Fig.3 Predict and test results for energy transfer through sound route 

3.3. ENERGY TRANSFER TEST ALONG MECHANICAL ROUTE 
AND SEA PREDICT 

The instrumental panel of rectangular box 4 is insulated by sound-reduction 
shroud so that box 4 is not excited by inner sound field 3. Then vibration of 
box 4 is excited only by the energy transferred from support beams 6 to 
develop its vibration response. The cylindrical shell is still hanged by spring 
in reverberation room and excited by inner reverberation field. The transfer 
of vibration energy is only along the mechanical route: reverberation sound 
field 1 -» cylindrical shell 2 -> annular bulkhead 5 -> supporters 6 -> 
instrumental panel of rectangular box 4, to develop the dynamic response 
of the instrumental panel of rectangular box 4. The predict and test results 
are shown in Fig. 4. 

It is found in the comparison of the results shown in the three figures 
that both the predict results and the test results are in a satisfactory 
agreement. Particularly the results from through sound transfer route are 



better than ones from through mechanical transfer route. 
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Fig 4. Predict and test results for energy transfer through mechanical route 
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Introduction 

When Statistical Energy Analysis was first introduced in the early 1960s it brought together 
two existing bodies of knowledge. One of these was work on coupled oscillators and the 
second was on statistical room acoustics. This work on room acoustics was part of a well 
established philosophy in Building Acoustics which treated both the acoustic pressure in 
rooms and vibration of the structure in a statistical manner. This meant that when SEA was 
formally established in all its depth and complexity it was rapidly adopted by Building 
Acoustics groups around the world. 

Since then SEA has been widely used in Building Acoustics and has been one of 
the most successful areas of the application of SEA For sound transmission in buildings 
there is no serious competition to SEA as an approach to solving problems and although 
some specific problems require specialist techniques for their analysis and study, SEA is 
generally the preferred method. Although SEA notation is not always used, the fundamental 
concepts of averaging over space and frequency are widely accepted. It is this long 
acceptance of the SEA principles which has led to its wide scale adoption. 

The application of SEA has developed to a point where the basic framework is 
accepted. There is still work to be done in developing and refining SEA but SEA has 
matured to a point where it is being used as a tool to solve real problems rather than as a 
research tool that has to be justified by comparison with other techniques. 

Current problems in Building Acoustics being addressed using SEA can be broadly 
classified into three distinct groups. On the smallest scale there are problems of sound 
transmission and particularly sound transmission through multi-layer walls and floors. On 
a larger scale SEA is increasingly being used to study flanking transmission between 
adjacent rooms and finally, SEA is being used for the study of füll sized buildings to help 
with general design and layout problems. 

Similar developments are being undertaken in other areas of acoustics and the are 
signs that the pattern of development is similar to that in Building Acoustics. Thus the 
current trends in Building Acoustics may give an insight into the future of other acoustics 
disciplines. 

In this paper each of these three areas are reviewed briefly and some current work 
that is ongoing is described. 
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Sound transmission through double walls 

One of the earliest applications of SEA was to sound transmission through walls. In 1970 
Price and Crocker [1] used SEA to study sound transmission through a wall consisting of 
two thin aluminium sheets. Although this form of construction is quite different from real 
building structures, nevertheless the application to other types of structure was immediately 
obvious and since then a range of types of construction have been examined. 

I 
/:/. r 

i s :ag 

Masonry Dry-lined 
wall Wall 

Figure I. Section through typical double walls 

Lightweight 
Partition 

There have been many studies of sound transmission through double walls some 
of which pre-date the introduction of SEA and today both classical and SEA approaches 
are used. Whilst classical approaches have been successful for the simpler form of 
construction they have tended to be unable to cope with more complex structures where 
there may be structural as well as airborne connections between two leaves of the wall. 

Double walls can be classified into three broad types as shown in Figure 1. There 
are masonry cavity walls, dry-lined masonry walls and lightweight partitions. In masonry 
double walls two layers of masonry, typically brick or concrete block, are structurally 
connected by metal ties which are inserted for stability reasons [2]. In dry-lined walls, a 
masonry core wall provides the structural support and a secondary leaf is attached either 
by discreet points, such as nails, screws or plaster dabs, or by connection along lines 
through timber battens or metal channels [3]. Absorption may be added to the cavity. 

The most acoustically complex form of construction is the lightweight double leaf 
partition which typically consists of two layers of plasterboard attached to some form of 
frame. There may or may not be absorption in the cavity and in cases where sound 
transmission is important two separate frames may be used In most cases a common frame 
is used and plasterboard is attached to the frame either by nails or by screws. 

Most of the difficulties with modelling this form of lightweight construction using 
SEA is with the frame. One approach is to model the frame as a connecting element 
between the two plates and to use standard theories for transmission between plates along 
a line connection. In this case the frame is not included in the model as a subsystem but is 
merely the connecting element between the two plates. The SEA model of a complete wall 
would be as shown in Figure 2. The properties of the frame may be included either by 
modelling it as a beam [4] or as a finite length plate [5]. The frame subdivides each leaf into 
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a number of sub-panels each of which would be modelled as a subsystem though for clarity 
only one is shown in Figure 2. This can lead to problems as there will be a low mode count 
in each sub-panel and there may be a non-diffuse sound field. 

An alternative method of modelling the coupling is to assume that the connection 
between the plasterboard and the frame occurs only at a few discrete points. The coupling 
can then be computed from the mobility of the elements. In this case the frame has to be 
modelled as a subsystem and usually the coupling between the plasterboard on one side and 
the frame can be treated independently from the coupling between the frame and the 
plasterboard on the other side. This then gives the SEA model that is shown in Figure 3. 
This is similar to the model of Figure 2 but has the frame as a subsystem. The plasterboard 
on each side behaves as 1 subsystem so there are no special problems of low modal density. 
However, if the wall is made from several sheets of plasterboard then experimental data 
suggests that each sheet should be modelled as a separate subsystem. In practise, for 
airborne sound transmission, each leaf can be modelled as one subsystem and the effective 
perimeter length and area increased. 

Figure2. SEAmodel of a double leaf lightweight partition where the structural connection 
is a LINE connection 
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Figure 3. SEAmodel of a double leaf lightweight partition where the structural connection 

is a series of INDEPENDENT POINTS. 
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The decision as to when to use one model and when to use the other must clearly 
be addressed and a good strategy that works well in practice is to assume that the 
connection between the frame and the plasterboard is behaving as a series of independent 
points when the nails or screws are more than half a bending wavelength apart Thus at low 
frequencies the joint between plates will be modelled as a line connection and at high 
frequencies the joint will be as a series of independent points. This clearly involves a 
certain amount of approximation but seems to work well in practice. 

Frequency Hz 

Figure 4. Measured and predicted transmission through a lightweight partition where the 

structural connection can be modelled as a LINE.  , measured; , predicted; 

', predicted at low frequencies where the wall is a single subsystem. 
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Figure S. Measured and predicted transmission through a lightweight partition where the 

structural connection can be modelled as a SERIES OF POINTS. , measured; -, 

predicted; , predicted at low frequencies where the wall is a single subsystem. 
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An example of measured predicted sound transmission through a lightweight 
plasterboard wall where the point connections are sufficiently close mat they can be 
modelled as a line can be seen in Figure 4. It can be seen that there is good agreement 
between the measured and predicted results over the entire frequency range. At low 
frequencies, below 160 Hz, the wall should be modelled as a single subsystem and an 
appropriate prediction is included. 

An example of measured and predicted transmission through a lightweight partition 
where the nails are far apart and are modelled as a series of independent points can be seen 
in Figure 5. Again there is good agreement though not as good as Figure 4. Further studies 
have shown that the model correctly models the structural coupling but that transmission 
through the cavity is not predicted accurately. 

In most practical cases the connection points between the frame and the 
plasterboard are sufficiently far apart that for most of the frequency range the connection 
can be modelled by a series of points. Since the coupling is directly proportional to the 
number of points, it follows that sound transmission through the wall will be directly 
proportional to the number of nails in the wall. This clearly assumes that transmission 
through the wall is being dominated by the structural path and this will generally be the 
case if there is absorption in the cavity to reduce paths through the cavity. If there is no 
absorption in the cavity then the cavity path will generally dominate and the number of 
nails in the wall will not have any effect. Where transmission is through the structure, 
doubling the number of nails on either side will give a 3 dB difference in the sound 
reduction index and so doubling the nails on both sides will give up to 6 dB. Experimental 
data confirms this theoretical prediction. 

The ability to use SEA models to model such complex structures is very important 
and is likely to have an increasing effect on design of walls and floors. There is an 
increasing demand for lighter constructions and in order to meet specified acoustic 
performance criteria it is necessary that these constructions should become more complex 
with more components. The days when walls were simply made thicker or heavier to 
achieve good sound insulation have long gone and increasingly lightweight constructions 
are the norm. Unfortunately the increased complexity of these constructions means that it 
is no longer practical to test all possible combinations of components to establish which are 
the best. Numerical modelling offers an alternative approach to establish, if not the best 
construction, at least those which merit further study. It can already be used as a filtering 
technique to rule out unsuitable forms of construction and will increasingly be used in 
product development 

Short flanking transmission paths 

It has long been recognised that measurements made in the field differ considerably from 
laboratory measurements and apart from difficulties of workmanship this can often be 
attributed to flanking transmission. SEA provides simple procedures for predicting flanking 
transmission and therefore helps with the understanding of sound transmission between 
rooms. This is an area where SEA is having a significant impact on the organisations 
responsible for building codes in a number of different countries. 

A typical situation consists of two adjacent rooms which share flanking walls or 
floors. Increasingly building codes, which try to maintain levels of acoustic insulation, need 
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to specify not only the properties of the common wall or floor but increasingly the 
properties of the flanking walls and floors. In Britain the Regulations [6] specify not only 
a range of wall and floor constructions that will give adequate insulation against direct 
sound transmission but also specify details of other components that could affect flanking 
transmission including detailed advice about construction materials and matters such as the 
position of windows. 

When the Regulations were first being developed testing was carried out in large 
experimental facilities where different combinations of materials were studied. However, 
as the range of materials and construction forms increases, so this is becoming increasingly 
difficult and numerical models are being used in its place. 

500 

Frequency Hz 

Figure6. Sound transmission through a wall.  , direct paths; -,direct+ 1st 

flanking paths; , all paths. Insert shows a section through the idealised building. 

500 

Frequency Hz 

Figure 7. Sound transmission through a floor. , direct paths;—--, direct + 1 ft 

flanking paths; , all paths. Insert shows a section through the idealised building.. 
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A recently developed CEN standard [7] seeks to harmonise many of the calculation 
procedures across Europe and although not yet finalised it is helping to bring to attention 
many of the key features of flanking transmission. This document does not use SEA 
notation and instead describes sound transmission in terms of parameters such as 
transmission coefficient and radiation efficiency, which are familiar to SEA users, as well 
as others such as "characteristic junction transmission" which are new. The standard is 
designed mainly for use with measured data and this is reflected in the structure and 
notation used . However, it can also be used as a predictive tool. The theories then 
described are identical to those found in an SEA model and in some laboratories the SEA 
notation is being used in preference to the notation given in the standard. The mere 
existence of a standard of this type demonstrates the extent to which SEA type methods are 
embedded in thinking at all levels. The only difficulty with the standard is that it specifies 
exactly how to model each situation (often by ascribing each real system to its nearest 
idealised system). This approach may stifle new ideas and new approaches particularly for 
non-standard constructions where a good design may be discarded because its nearest 
idealised equivalent does not work well. 

Although studying individual transmission paths can be very successful there are 
some difficulties which can be seen by considering sound transmission through a wall as 
shown in Figure 6 and transmission through a floor as shown in Figure 7. These figures 
show the predicted transmission for an idealised building with a 1 SO mm concrete floor and 
100 mm concrete block walls. The shortest path is direct transmission through the wall or 
floor. For the wall most of the sound is transmitted through the wall and the difference 
between the direct path and all paths is less than 3 dB. Including the flanking paths that 
cross one structural joint increases the accuracy of the prediction to within 1.5 dB. 

TABLE 1. D,TjW of the wall and floor as the number of flanking 
paths is increased. 

Subsystems in path Wall Floor 

3 (Direct path) 42.S 54.6 
4 (Direct +1 st flanking) 41.6 50.7 
5 41.2 49.3 
6 41.0 48.5 
7 40.9 48.0 
8 40.8 47.6 
9 40.8 47.4 
10 40.7 47.2 
Sum of all paths 40.5 46.4 

However, for the floor it can be seen that the level difference due to transmission 
through the direct path is over 10 dB higher than the level difference due to all paths. 
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Adding all the first order flanking paths reduces the level difference by 5 dB but is still 5 
dB above the overall transmission. Adding additional paths increases the accuracy of the 
prediction as can be seen in Table 1 which shows the single figure index DaTw for both the 
wall and floor as additional paths are included. However, a path by path analysis is only 
useful if a few dominant paths control the overall transmission. In this example, a path 
analysis is useful for the wall but not the floor since too many paths need to be considered 
for reasonable levels of accuracy. Unfortunately, without carrying out the calculations it is 
not clear when a path analysis is going to be useful and when not. 

The main advantage of a path analysis is its simplicity. The airborne level 
difference due to transmission along a path 1 -2-3-4 can be given by [8] 

D„„ . UMogW-^ (1) 

where T|j is the total loss factor, n^ is the coupling loss factor and Kis the room volume. 
The equation for each of the loss factors is usually a simple algebraic expression or a list 
of measured data. It is therefore a simple mater to carry out the calculation by hand (or with 
a spreadsheet if it is to be repeated often) without the need for expensive "black box" 
software. This simplicity has always been one of the attractions of SEA. 

SEA as a design tool 

The final area where SEA is being developed is for use as a design tool to examine the 
global properties of a building or structure. Increasing the size of the system being 
considered greatly increases the complexity of the model. When transmission is only over 
a short distance then it is generally sufficient to consider only bending wave transmission. 
However, when larger physical models are considered then in-plane waves must also be 
included. This increases the difficulty in calculating the structural transmission coefficients 
and simple algebraic expressions are rarely sufficient. 

The best method of modelling the in-plane waves is sometimes a topic of 
discussion. In a large building (or other structure) there are large continuous floors and it 
is sometimes suggested that the entire floor should be modelled as a single subsystem for 
in-plane waves even if it is subdivided for bending waves. The alternative is to divide each 
separate floor into three separate subsystems (bending, longitudinal and transverse waves). 
This is a more elegant solution as there is men physical coincidence between the three 
subsystems and the mechanisms of wave conversion are then obvious. On the other hand 
the modal density and modal overlap of the longitudinal and transverse subsystems will be 
low. 

If the floor is a single subsystem then the in-plane vibration will be constant for all 
floor slabs whereas if the floors are independent subsystems then the vibration level of each 
will be different. This provides an experimental method of determining the best approach. 

An experiment was carried out to resolve this problem and also to establish whether 
or not the existing theoretical models [9] which are normally verified by comparison with 
bending wave energy also predict the in-plane vibration correctly. 
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The in-plane energy was measured by simply placing an accelerometer on its side. 
This limits the range of frequencies where reliable measurements can be made as bending 
waves are associated with rotation of the plate elements causing in-plane motion at the 
surface. In theory this unwanted vibration can be reduced by using two accelerometers on 
opposite sides of the floor but in practise this does not result in any significant 
improvement. The test was carried out of a series of floors marked 2 - 7 in the insert of 
Figures 8 and 9. The source was a transient excitation of a wall shown by an arrow in the 
figure. This generated in-plane vibration in the floors due to wave conversion at the 
boundary. 

125 250 500 1000 

Frequency Hz 

2000 4000 

Figure 8. Measured and predicted BENDING vibration in a building as the distance from the 

source increases. , measured; , predicted 

125 250 500 1000 

Frequency Hz 

2000 4000 

Figure 9. Measured and predicted IN-PLANE vibration in a building as the distance from the 
source increases. , measured; , predicted 



10 R.J.M. CRAIK 

A comparison of the measured and predicted bending vibration can be seen in 
Figure 8. This confirms what other measurements have already shown [10] that the bending 
energy can be predicted for this building. 

A comparison between the measured and predicted in-plane energy can be seen in 
Figure 9. Although there is good agreement between the measured and predicted results the 
results must be interpreted with care. The bending rotation induced in-plane vibration on 
the surface is greater than the predicted in-plane vibration at frequencies above 500 Hz and 
so at these frequencies the accelerometer is not measuring in-plane energy. The same 
problem occurs at low frequencies close to the source particularly for floor 2. The 
remaining data shows that the vibration level is different at each floor and so each floor 
section should be modelled as a separate subsystem. In addition there is good agreement 
between the measured and predicted results showing that existing theoretical models can 
be used with confidence. 

One of the applications of these models is to calculate the effect of changes in room 
layout or material properties on sound transmission through large structures. 

An example of this type of application can be seen in the results of Figure 10 which 
show a section through an idealised building. The building was taken to have ISO mm 
concrete floors and 100 mm concrete block walls (as in Figure 6 and 7) and a noise source 
was modelled as being located in the lower left hand room. Sound transmission through the 
entire building was then calculated and the values of D„T>W (weighted standardised level 
difference) for transmission from the source room to the other rooms in the building was 
computed. The properties of the materials used in the internal walls were then increased by 
a factor of 2 (except in the case of the damping where all the walls and floors had their 
internal loss factor increased) and the change in the Dajm values was computed. The figure 
shows the section of the building and in each room is shown the change in DnTw in dB. A 
positive number indicates that the level difference has gone up (sound transmission has 
been reduced). 

It can be seen that the change in Youngs Modulus has a relatively small effect on 
transmission which decreases with distance from the source. The level difference has gone 
up by 1 dB for transmission to the room next door but goes down for the room above 
resulting from a redistribution of energy in the building. The increased stiffness of the walls 
has increased transmission vertically and reduced transmission horizontally. There is 
therefore a decrease for all of the top floor rooms. Despite the large change in the values 
of Youngs modulus (a factor of 2) the change in level difference is relatively small. 

Much larger changes occur when the thickness of the internal walls is increased. 
There is a significant improvement in transmission to the room next door and almost no 
change to the room above. The improvement is achieved for all ground floor rooms and 
again there is a redistribution of energy in a vertical direction. 

Increasing the density of the internal walls improves the sound insulation for all 
rooms and the benefit generally increases with distance. Similarly increasing the internal 
loss factor (of all walls and floors) increases the sound insulation particularly for rooms that 
are far from the source. 
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■0.7 ■0.7 •0.6 -0.5 -0.4 -0.3 ■0.2 •0.2 -0.2 -0.1 

-0.5 -0.5 •0.4 ■0.3 -0.2 -0.1 ■0.1 ■0.0 -0.0 0.1 

-0.5 •0.3 -0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 

X 1.0 0.4 0.5 0.5 0.5 0.4 0.4 0.4 0.5 

Density 

x2 

1.1 1.5 1.S 2.2 2.5 2.9 3.2 3.6 4.0 3.9 

1.1 1.6 1.9 2.3 2.7 3.1 3.5 3.8 4.2 4.1 

1.0 2.0 2.2 2.5 2.9 3.2 3.6 4.0 4.4 4.3 

X 3.4 2.5 2.7 3.0 3.3 3.7 4.1 4.5 4.3 

Thickneu 

x2 

-0.8 ■OS -0.1 0.3 0.7 1.1 1.5 1.9 2.3 2.5 

•0.4 0.1 0.6 1.1 1.5 1.9 2.2 2.5 2.9 3.1 

0.1 1.3 1.9 2.2 2.4 2.7 3.0 3.3 3.6 3.8 

X 5.6 3.2 3.1 3.2 3.4 3.6 3.9 4.2 4.4 
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ftctor 

x2 

6.2 6.8 7.4 8.1 8.8 9.4 10.0 10.6 11.2 11.8 

5.4 6.0 6.7 7.4 8.1 8.9 9.6 10.2 10.8 11.3 

3.1 4.3 5.7 6.8 7.6 8.3 9.0 9.7 10.2 10.8 

X 2.2 5.0 6.3 7.3 8.0 8.5 9.1 9.7 10.2 

Figure 10. Change inDnTv as the material properties of the internal walls 
(or all elements for die damping) are increased by a factor of 2. 
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Conclusions 

During the last 30 years there has been an increasing development of SEA and an 
increasing use of its application to Building Acoustics. The basic philosophy of SEA is 
firmly embedded in Building Acoustics and this has been one of the great strengths in its 
application. SEA is likely to continue to be the main conceptual model used in Building 
Acoustics and as more studies are carried out so there will be greater confidence in its 
application. 

One of the fundamental remaining problems in SEA in general is in the analysis of 
the uncertainties of the theoretical model. Surprisingly this is not one of great importance 
to users of SEA in the field of Building Acoustics. In Building Acoustics there are 
relatively few tests that are routinely carried out (such as sound transmission) and all are 
based on robust procedures involving spacial, temporal and frequency averaging. Most 
users therefore have a "feel" for the measured data and particularly problems associated 
with spacial variation and low frequency. 

In the future SEA will continue to develop. Fundamental work will result in more 
closely defined limits of applicability and uncertainty providing a firm theoretical basis. 
Other developments will take place extending the range of applications comparing SEA 
models with other theoretical models and with detailed laboratory results. This work is in 
progress in many disciplines of acoustics. 

The biggest change will be in when industry takes these SEA models and uses them 
for design purposes. This will lead to further development of SEA and is a phase that is just 
beginning. 
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A better design technique for controlling pipework noise. 

• 

Noise is an important design issue for marine-structure and onshore plant designers and 
operators.   Meeting regulations and clients' specifications for noise is of growing concern. 

A survey has revealed that most builders, contractors and operators see the need for more 
capable and reliable prediction and optimisation methods, to enable noise to be controlled 
to specific limits at -the design stage and hence to comply with customers' specifications. 
Better design techniques can also assist competitiveness by aiding economical low noise 
design; 

A Managed Programme of the Centre for Marine and Petroleum Technology, which is 
being coordinated by Marinetech South Ltd, is combining the resources of a £0.5M 
research programme (now in mid-term) with multi-sponsor industrial design projects in 
order to develop applications of Statistical Energy Analysis (SEA) techniques to marine 
craft and offshore and related installations. 

Statistical Energy Analysis (SEA) is a noise and vibration modelling technique introduced 
30 years ago, in particular to design spacecraft to resist damage from acoustically-induced 
vibration during the launch phase.   SEA has since been developed for broader application, 
particularly for the prediction of sound levels in road vehicles, aircraft and buildings.   Its 
benefits, including simplicity for the guided user, can now be applied to prediction of 
noise from pipework. 

Commercial SEA applications packages are available and it is the intention of this study to 
develop and verify the particular aspects required to allow application to pipework noise. 
The method could then be applied via a developed user interface. 

• Currently, proposed noise models have been inadequate to give acceptable confidence in 
predicted levels because they omit important structural response factors and include internal 
attenuation uncertainties, which are to be addressed in this study. 

• The application study is targeted primarily at gas-filled systems but can be extended to 
liquid-filled systems. 

• The intended project is costed at £65k over a period of 15 months. 

• Sponsors will have the opportunity of influencing the direction and emphasis of the study, 
at the project definition stage and throughout, and will receive early information on 
technical progress in this important area of design. 

• Proposed deliverables include algorithms and guidelines for SEA modelling of noise from 
pipework. 

If you are interested in knowing more about this programme, please contact: 

NeilPinder, Programme Coordinator 
Marinetech South Ltd 
Tizard Building (ISVR) Tel:      +44 (0)1703 593756 
University of Southampton Fax:     +44 (0)1703 592728 
Highfield 
Southampton S017 1BJ, UK E-mail: jnp@isvr.soton.ac.uk 
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